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Recall: computing paths on the AS graph

● Nodes are Autonomous Systems (AS) 

● Edges reflect physical connections & biz relationships 
● Customers pay providers  
● Peers don’t pay each other 

● Paths are selected based on policy 

● Policy reflects business goals (i.e., how money flows) 
● “Only carry traffic if you’re getting paid for it”  
● “Try and make/save money when sending traffic”
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Recall: BGP

● Protocol that implements interdomain routing 

● Extends Distance-Vector 

● Basic idea 
● Destinations are prefixes
● Each AS advertises its path to a prefix
● Policy dictates which paths an AS selects (“import policy”) and which 

paths it advertises (“export policy”) 

● Gao-Rexford rules tell us what import/export policies will 
achieve business goals
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● Typical order of priority:
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Destination prefix 
advertised by… Export route to…

Customer
Everyone 

 (providers, peers,  
other customers)

Peer Customers

Provider Customers

Gao-Rexford Rules: Export policy

A

meB

C D



Gao-Rexford Rules: Implication

● Under two assumptions about the AS graph 
(coming up), if all ASes follow Gao-Rexford, we can 
guarantee: 
  
● Reachability: any two ASes can communicate 
● Convergence: all routers agree on paths 

● The above hold in steady state
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Steady State and Convergence

● Steady state essentially means no changes  
● No addition/removal/failure of nodes, links, destinations  
● No change in policies, etc.

time

Last 
change

Routes settle or “converge”  
(i.e., will not change from here on)

convergence time
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Two assumptions

#1 The graph of customer-provider relationships is acyclic 
● Cannot have A!B!...!C and then C!A (customer ! provider) 
● Means one can arrange providers in a hierarchy 
● Note: OK if peering relationships are cyclic (A-B, B-C, C-A) 

9



Gao-Rexford Rules: Implication

● Under two assumptions about the AS graph, if all 
ASes follow Gao-Rexford, we can guarantee: 

● Reachability: any two ASes can communicate
● Convergence: all routers agree on paths 

● The above hold in steady state 



Gao-Rexford Rules: Implication

● Under two assumptions about the AS graph, if all 
ASes follow Gao-Rexford, we can guarantee: 

● Reachability: any two ASes can communicate
● Convergence: all routers agree on paths 

● The above hold in steady state 

● The above are not guaranteed for general policies!
● (You’ll see an example of this in section)



Recap

11



Recap

● Policy is implemented by choosing which routes we 
import and which ones we export 
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Recap

● Policy is implemented by choosing which routes we 
import and which ones we export 

● Gao-Rexford rules tell us which routes to import/export in 
order to make/save money 

● Good stuff happens when you follow G-R rules

11
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● Wrapping up BGP  
● Context  
● Goals   
● Approach 

● Wrap up Gao-Rexford 
● Protocol design  
● Limitations 

● Designing the IP header



So far: our model of the AS graph

An AS advertises routes to its neighbor ASes



In reality... 

Border routers
Interior routers



Many design questions.... 

● How do we ensure the routers “act as one”? 
● The role of border vs. interior routers? 
● Interaction between BGP and IGP? 
● How does BGP implement all this?
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Who “speaks” BGP? 

Border routers
Interior routers

Border routers at an Autonomous System
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What does “speak BGP” mean?

● Advertise routes as specified by the BGP protocol standard  
● read more here: https://datatracker.ietf.org/doc/html/rfc4271

● Specifies what messages BGP “speakers” exchange 
● message types and syntax 

● And how to process these messages 
● e.g., “when you receive a BGP update, do…. “

https://datatracker.ietf.org/doc/html/rfc4271
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Note: Some Border Routers Don’t Need BGP

● Customer that connects to a single provider AS 
● Provider can advertise prefixes into BGP on behalf of customer 
● … and the customer can simply default-route to the AS

Provider

Customer
Install default routes pointing to Provider

Install routes 130.132.0.0/16 pointing to Customer

130.132.0.0/16
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BGP “sessions”
“iBGP session”

Border router speaks BGP with routers in its own AS 
(hence, internal BGP, or “iBGP”)
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eBGP, iBGP, IGP

● eBGP: BGP sessions between border routers in different ASes 
● exchange routes to different destination prefixes

● iBGP: BGP sessions between border routers and other 
routers within the same AS 
● distribute externally learned routes internally 

● IGP: “Interior Gateway Protocol” = Intradomain routing protocol 
● provide internal reachability  
● e.g., OSPF, RIP
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Short Summary

● Every router in AS has two routing tables: 
● From IGP: next hop router to all internal destinations 
● From iBGP: egress router to all external destinations 

● For internal addresses, just use IGP 
● Entry <internal destination, internal next hop>

● For external locations: use iBGP to find egress 
● Use IGP to find next hop to egress router

24



Note: In reality, there are a few different ways to 
integrate inter- and intra-domain routing
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Note: In reality, there are a few different ways to 
integrate inter- and intra-domain routing

● Our option: run iBGP between all routers in domain 
● Requires NxB iBGP connections.  Could be a scaling issue. 
● This is what we will assume 
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Many design questions.... 



Many design questions.... 

● How do we ensure the routers in an AS “act as one”? 
● The role of border vs. interior routers? 
● Interaction between BGP and IGP 
● How is all this implemented? 

● Route updates and attributes



BGP protocol message types

● Many different message types 
● Open 
● Keepalive  
● Notification 
● ... 
● Update 

● Inform neighbor of new routes 
● Inform neighbor of updates to old routes 
● “Withdraw” a route that’s now inactive



Route Updates



Route Updates

● Format <IP prefix: route attributes> 
● attributes describe properties of the route
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Route Attributes

● General mechanism used to express properties about routes
● Used in route selection/export decisions 

● Some attributes are local to an AS
● Not propagated in eBGP advertisements 

● Others are propagated in eBGP route advertisements

● There are many standardized attributes in BGP
● We will discuss four important ones
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Attributes (1): ASPATH
● Path vector that lists all the ASes a route 

advertisement has traversed (in reverse order) 
● Carried in route announcements 
 

IP prefix = 128.112.0.0/16 
AS path = 88

IP prefix = 128.112.0.0/16 
AS path = 7018 88

AS 7018

AS 25

AS 88

Princeton, 
 128.112.0.0/16

Berkeley

ATT



Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths 
● Local to an AS; carried only in iBGP messages 
● The higher the value the more that route is preferred
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AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths 
● Local to an AS; carried only in iBGP messages 
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

IP prefix = 128.112.0.0/16 
AS path = 100 88



AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths 
● Local to an AS; carried only in iBGP messages 
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

IP prefix = 128.112.0.0/16 
AS path = 100 88
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destination ASPATH LocPref
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AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths 
● Local to an AS; carried only in iBGP messages 
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

BGP table at AS 7018:

destination ASPATH LocPref

128.112.0.0/16 100, 88 3000

IP prefix = 128.112.0.0/16 
AS path = 200 88



Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths 
● Local to an AS; carried only in iBGP messages 
● The higher the value the more that route is preferred

AS 7018

AS 88
128.112/16

AS 100
AS 200

BGP table at AS 7018:

destination ASPATH LocPref

12.112.0.0/16 100, 88 3000
12.112.0.0/16 200, 88 1000
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In reality... 

Princeton

Berkeley

AT&T

Verizon
`

Note: both routes follow the same AS path!

Which route does Verizon prefer?



Attributes (3) : MED

● MED = “Multi-Exit Discriminator” 

● Used when ASes are interconnected via 2 or more links to 
specify how close a prefix is to the link it is announced on



Attributes (3) : MED

Princeton

Berkeley

AT&T

Verizon



Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon



Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon



Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon
IP prefix = ... 
AS path = ... 
MED = 10 



Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon
IP prefix = ... 
AS path = ... 
MED = 10 



Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon
IP prefix = ... 
AS path = ... 
MED = 10 

IP prefix = ... 
AS path = ... 
MED = 50 



Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)
● AS receiving prefix (optionally!) uses MED to select link 

Princeton

Berkeley

AT&T

Verizon
IP prefix = ... 
AS path = ... 
MED = 10 

IP prefix = ... 
AS path = ... 
MED = 50 



More reality... 

Princeton

Berkeley

AT&T

Verizon
`

Which route does AT&T prefer?
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Note: IGP may conflict with MED
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Note: IGP may conflict with MED

AT&T

Verizon

2 12
4

5
1

1
1 1

IP prefix = ... 
AS path = ... 
MED = 10 

IP prefix = ... 
AS path = ... 
MED = 50 
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IGP-MED conflicts pretty common

Dsf A
B

Can lead to asymmetric paths!
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Closing the loop...  
Typical Selection Policy

● In decreasing order of priority 
● make/save money: LOCAL PREF (cust > peer > provider) 
● maximize performance: length of ASPATH 
● minimize use of my network bandwidth: “hot potato”, MED 
● … 
● …



Using Attributes

● Rules for route selection in priority order

Priority Rule Remarks
1 LOCAL PREF Pick highest LOCAL PREF
2 ASPATH Pick shortest ASPATH length
3 IGP path Lowest IGP cost to next hop 

(egress router)
4 MED MED preferred
5 Router ID Smallest next-hop router’s IP 

address as tie-breaker



Questions?
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● Not guaranteed if Gao-Rexford doesn’t hold
● Example of policy oscillations in discussion section



Questions?

47



Taking Stock: We’ve done...

● An end-to-end overview of the Internet arch. 

● How L3 works  
● IP addressing and routers  
● Intra-domain routing  
● Inter-domain routing  

● Last topic: the IP header  
● At which point, you’ll know how L3 works!



Let’s design the IP header

● Syntax: format of an IP packet  
● Nontrivial part: header 
● Rest is opaque payload 

● Semantics: meaning of IP header fields 
● How they’re processed

49
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Designing the IP header

● Think of the IP header as an interface
● between the source and network (routers)
● between the source and destination endhosts

● Designing an interface
● what task(s) are we trying to accomplish?
● what information is needed to do it?

● Header reflects information needed for basic tasks
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What are these tasks?  
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)
● Tell destination what to do next  (dst host)
● Get responses back to the source (dst host, router) 

● Deal with problems along the way (router, dst host)
● Specify any special handling (router, dst host)

Next: what information do we need?



Parse Packet Correctly
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Parse Packet Correctly

● What version of IP?
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Parse Packet Correctly

● What version of IP?

● Where does header end? 
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Parse Packet Correctly

● What version of IP?

● Where does header end? 

● Where does packet end?
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Deliver packet to the L3 destination
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Deliver packet to the L3 destination

● Provide destination address (duh!)
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Tell the destination how to handle packet

● Indicate which protocol should handle packet next
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Tell the destination how to handle packet

● Indicate which protocol should handle packet next
● Protocol field: identifies the higher-level protocol 

● Important for de-multiplexing at receiving host

Application

Transport

Network

Data link

Physical

SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN



● Protocol field that identifies the L4 protocol for this packet 
● Common examples 

● “6” for the Transmission Control Protocol (TCP) 
● “17” for the User Datagram Protocol (UDP)

IP header IP header
TCP header UDP header

protocol=6 protocol=17

Tell the destination how to handle packet
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Get responses back to the source

● Source IP address



Where are we ... 

● Parse packet ! version, header length, packet length 
● Forward packet to the L3 dst ! destination address 
● Tell destination what to do next ! protocol field 
● Get responses back to the source ! source address 

● Deal with problems along the way 
● Specify any special handling



What problems?
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What problems?

● Loops
● Corruption 
● Packet too large (> MTU)  
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Preventing Loops

● Forwarding loops cause packets to cycle for a looong time 
● left unchecked would accumulate to consume all capacity

● Time-to-Live (TTL) field 
● decremented at each hop, packet discarded if reaches 0 
● …and “time exceeded” message is sent to the source

Means header must  
include source IP address
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Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

● If not correct, router/destination discards packets
● So it doesn’t act on bogus information

● Checksum updated at every router
● Why?
● Why include TTL?
● Why only header?
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Fragmentation 

● Every link has a “Maximum Transmission Unit” (MTU)
● largest number of bits it can carry as one unit

● A router can split a packet into multiple “fragments” if 
the packet size exceeds the link’s MTU 
 

● Must reassemble to recover original packet

hdr 3980

hdr 1480 hdr 1200 hdr 1300

Details of fragmentation will be covered in section



Where are we ... 

● Parse packet ! version, header length, packet length 
● Forward packet to the L3 dst ! destination address 
● Tell destination what to do next ! protocol field 
● Get responses back to the source ! source address 

● Deal with problems along the way 
! TTL, source address, checksum, frag. fields (TBD) 

● Specify any special handling
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What forms of special treatment?

● Don’t treat all packets the same (“Type of Service”)  
● Idea: treat packets based on app/customer needs 

● “Options” 
● Request advanced functionality for this packet
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“Type of Service” (ToS)

● Originally: multiple bits used to request different forms 
of packet delivery 
● Based on priority, delay, throughput, reliability, or cost 
● Frequently redefined, never fully deployed 
● Only notion of priorities remained 

● Today: 
● Differentiated Services Code Point (DSCP): traffic “classes” 
● Explicit Congestion Notification (ECN): a later lecture
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Options

● Optional directives to the network 

● Examples 
● Record Route, Source Route, Timestamp, ... 

● More complex implementation  
● Leads to variable length headers 
● Often leads to higher processing overheads



Where are we ... 

● Parse packet ! version, header length, packet length 
● Forward packet to the L3 dst ! destination address 
● Tell destination what to do next ! protocol field 
● Get responses back to the source ! source address 

● Deal with problems along the way 
! TTL, source address, checksum, frag. fields (TBD) 

● Specify any special handling ! ToS, options
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Two remaining topics (next time)

● IPv4 ! IPv6  
● Security implications of the IP header



Questions?
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