
Wrapping up BGP
 and

 the IP header

Spring 2024
Sylvia Ratnasamy

CS168.io

1

Outline

● Wrapping up BGP
● Context
● Goals
● Approach

● Wrap up Gao-Rexford
● Protocol design
● Limitations

● Designing the IP header

Recall: computing paths on the AS graph

Recall: computing paths on the AS graph

● Nodes are Autonomous Systems (AS)

Recall: computing paths on the AS graph

● Nodes are Autonomous Systems (AS)

● Edges reflect physical connections & biz relationships
● Customers pay providers
● Peers don’t pay each other

Recall: computing paths on the AS graph

● Nodes are Autonomous Systems (AS)

● Edges reflect physical connections & biz relationships
● Customers pay providers
● Peers don’t pay each other

● Paths are selected based on policy

Recall: computing paths on the AS graph

● Nodes are Autonomous Systems (AS)

● Edges reflect physical connections & biz relationships
● Customers pay providers
● Peers don’t pay each other

● Paths are selected based on policy

● Policy reflects business goals (i.e., how money flows)
● “Only carry traffic if you’re getting paid for it”
● “Try and make/save money when sending traffic”

Recall: BGP

● Protocol that implements interdomain routing

Recall: BGP

● Protocol that implements interdomain routing

● Extends Distance-Vector

Recall: BGP

● Protocol that implements interdomain routing

● Extends Distance-Vector

● Basic idea
● Destinations are prefixes
● Each AS advertises its path to a prefix
● Policy dictates which paths an AS selects (“import policy”) and which

paths it advertises (“export policy”)

Recall: BGP

● Protocol that implements interdomain routing

● Extends Distance-Vector

● Basic idea
● Destinations are prefixes
● Each AS advertises its path to a prefix
● Policy dictates which paths an AS selects (“import policy”) and which

paths it advertises (“export policy”)

● Gao-Rexford rules tell us what import/export policies will
achieve business goals

● When importing (selecting) a route to a destination,
pick route advertised by customer > peer > provider

Gao-Rexford Rule: Import policy

● When importing (selecting) a route to a destination,
pick route advertised by customer > peer > provider

● In practice, ASes use additional rules to break ties

Gao-Rexford Rule: Import policy

● When importing (selecting) a route to a destination,
pick route advertised by customer > peer > provider

● In practice, ASes use additional rules to break ties

● Typical order of priority:
● First, make/save money (G-R rule)
● Then, maximize performance
● Then, minimize use of my network bandwidth
●

Gao-Rexford Rule: Import policy

● When importing (selecting) a route to a destination,
pick route advertised by customer > peer > provider

● In practice, ASes use additional rules to break ties

● Typical order of priority:
● First, make/save money (G-R rule)
● Then, maximize performance
● Then, minimize use of my network bandwidth
●

Gao-Rexford Rule: Import policy

Destination prefix
advertised by… Export route to…

Customer
Everyone

 (providers, peers,
other customers)

Peer Customers

Provider Customers

Gao-Rexford Rules: Export policy

A

meB

C D

Gao-Rexford Rules: Implication

● Under two assumptions about the AS graph
(coming up), if all ASes follow Gao-Rexford, we can
guarantee:

● Reachability: any two ASes can communicate
● Convergence: all routers agree on paths

● The above hold in steady state

Steady State and Convergence

● Steady state essentially means no changes
● No addition/removal/failure of nodes, links, destinations
● No change in policies, etc.

Steady State and Convergence

● Steady state essentially means no changes
● No addition/removal/failure of nodes, links, destinations
● No change in policies, etc.

time

Steady State and Convergence

● Steady state essentially means no changes
● No addition/removal/failure of nodes, links, destinations
● No change in policies, etc.

time

Last
change

Steady State and Convergence

● Steady state essentially means no changes
● No addition/removal/failure of nodes, links, destinations
● No change in policies, etc.

time

Last
change

convergence time

Steady State and Convergence

● Steady state essentially means no changes
● No addition/removal/failure of nodes, links, destinations
● No change in policies, etc.

time

Last
change

Routes settle or “converge”
(i.e., will not change from here on)

convergence time

Two assumptions

9

Two assumptions

#1 The graph of customer-provider relationships is acyclic
● Cannot have A!B!...!C and then C!A (customer ! provider)
● Means one can arrange providers in a hierarchy
● Note: OK if peering relationships are cyclic (A-B, B-C, C-A)

9

Gao-Rexford Rules: Implication

● Under two assumptions about the AS graph, if all
ASes follow Gao-Rexford, we can guarantee:

● Reachability: any two ASes can communicate
● Convergence: all routers agree on paths

● The above hold in steady state

Gao-Rexford Rules: Implication

● Under two assumptions about the AS graph, if all
ASes follow Gao-Rexford, we can guarantee:

● Reachability: any two ASes can communicate
● Convergence: all routers agree on paths

● The above hold in steady state

● The above are not guaranteed for general policies!
● (You’ll see an example of this in section)

Recap

11

Recap

● Policy is implemented by choosing which routes we
import and which ones we export

11

Recap

● Policy is implemented by choosing which routes we
import and which ones we export

● Gao-Rexford rules tell us which routes to import/export in
order to make/save money

11

Recap

● Policy is implemented by choosing which routes we
import and which ones we export

● Gao-Rexford rules tell us which routes to import/export in
order to make/save money

● Good stuff happens when you follow G-R rules

11

Outline

● Wrapping up BGP
● Context
● Goals
● Approach

● Wrap up Gao-Rexford
● Protocol design
● Limitations

● Designing the IP header

So far: our model of the AS graph

An AS advertises routes to its neighbor ASes

In reality...

Border routers
Interior routers

Many design questions....

● How do we ensure the routers “act as one”?
● The role of border vs. interior routers?
● Interaction between BGP and IGP?
● How does BGP implement all this?

Who “speaks” BGP?

Border routers
Interior routers

Who “speaks” BGP?

Border routers
Interior routers

Border routers at an Autonomous System

What does “speak BGP” mean?

What does “speak BGP” mean?

● Advertise routes as specified by the BGP protocol standard
● read more here: https://datatracker.ietf.org/doc/html/rfc4271

https://datatracker.ietf.org/doc/html/rfc4271

What does “speak BGP” mean?

● Advertise routes as specified by the BGP protocol standard
● read more here: https://datatracker.ietf.org/doc/html/rfc4271

● Specifies what messages BGP “speakers” exchange
● message types and syntax

https://datatracker.ietf.org/doc/html/rfc4271

What does “speak BGP” mean?

● Advertise routes as specified by the BGP protocol standard
● read more here: https://datatracker.ietf.org/doc/html/rfc4271

● Specifies what messages BGP “speakers” exchange
● message types and syntax

● And how to process these messages
● e.g., “when you receive a BGP update, do…. “

https://datatracker.ietf.org/doc/html/rfc4271

Note: Some Border Routers Don’t Need BGP

● Customer that connects to a single provider AS
● Provider can advertise prefixes into BGP on behalf of customer
● … and the customer can simply default-route to the AS

Note: Some Border Routers Don’t Need BGP

● Customer that connects to a single provider AS
● Provider can advertise prefixes into BGP on behalf of customer
● … and the customer can simply default-route to the AS

Provider

Customer

Note: Some Border Routers Don’t Need BGP

● Customer that connects to a single provider AS
● Provider can advertise prefixes into BGP on behalf of customer
● … and the customer can simply default-route to the AS

Provider

Customer
130.132.0.0/16

Note: Some Border Routers Don’t Need BGP

● Customer that connects to a single provider AS
● Provider can advertise prefixes into BGP on behalf of customer
● … and the customer can simply default-route to the AS

Provider

Customer
Install default routes pointing to Provider

130.132.0.0/16

Note: Some Border Routers Don’t Need BGP

● Customer that connects to a single provider AS
● Provider can advertise prefixes into BGP on behalf of customer
● … and the customer can simply default-route to the AS

Provider

Customer
Install default routes pointing to Provider

Install routes 130.132.0.0/16 pointing to Customer

130.132.0.0/16

BGP “sessions”

BGP “sessions”

BGP “sessions”

BGP “sessions”“eBGP session”

Only border routers exchange messages
with routers in external domains
(hence, external BGP or “eBGP”)

BGP “sessions”

Border router speaks BGP with routers in its own AS
(hence, internal BGP, or “iBGP”)

BGP “sessions”

Border router speaks BGP with routers in its own AS
(hence, internal BGP, or “iBGP”)

BGP “sessions”
“iBGP session”

Border router speaks BGP with routers in its own AS
(hence, internal BGP, or “iBGP”)

eBGP, iBGP, IGP

eBGP, iBGP, IGP

● eBGP: BGP sessions between border routers in different ASes
● exchange routes to different destination prefixes

eBGP, iBGP, IGP

● eBGP: BGP sessions between border routers in different ASes
● exchange routes to different destination prefixes

● iBGP: BGP sessions between border routers and other
routers within the same AS
● distribute externally learned routes internally

eBGP, iBGP, IGP

● eBGP: BGP sessions between border routers in different ASes
● exchange routes to different destination prefixes

● iBGP: BGP sessions between border routers and other
routers within the same AS
● distribute externally learned routes internally

● IGP: “Interior Gateway Protocol” = Intradomain routing protocol
● provide internal reachability
● e.g., OSPF, RIP

Putting the pieces together

Putting the pieces together

6 9
1

3

3
22

4

1. Provide internal reachability (IGP)

Putting the pieces together

6 9
1

3

3
22

4

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)

Putting the pieces together

6 9
1

3

3
22

4

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)

Putting the pieces together

6 9
1

3

3
22

4

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)

Putting the pieces together

6 9
1

3

3
22

4

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

Putting the pieces together

R1

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

R2

R7

Putting the pieces together

R1

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

a.b.0.0/16

R2

R7

Putting the pieces together

R1

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

a.b.0.0/16

R2

R7

Putting the pieces together

R1

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

a.b.0.0/16

R2

R7

Putting the pieces together

R1

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Travel shortest path to egress (IGP)

a.b.0.0/16

R2

R7

Short Summary

24

Short Summary

● Every router in AS has two routing tables:
● From IGP: next hop router to all internal destinations
● From iBGP: egress router to all external destinations

24

Short Summary

● Every router in AS has two routing tables:
● From IGP: next hop router to all internal destinations
● From iBGP: egress router to all external destinations

● For internal addresses, just use IGP
● Entry <internal destination, internal next hop>

24

Short Summary

● Every router in AS has two routing tables:
● From IGP: next hop router to all internal destinations
● From iBGP: egress router to all external destinations

● For internal addresses, just use IGP
● Entry <internal destination, internal next hop>

24

Short Summary

● Every router in AS has two routing tables:
● From IGP: next hop router to all internal destinations
● From iBGP: egress router to all external destinations

● For internal addresses, just use IGP
● Entry <internal destination, internal next hop>

● For external locations: use iBGP to find egress
● Use IGP to find next hop to egress router

24

Note: In reality, there are a few different ways to
integrate inter- and intra-domain routing

25

Note: In reality, there are a few different ways to
integrate inter- and intra-domain routing

● Our option: run iBGP between all routers in domain
● Requires NxB iBGP connections. Could be a scaling issue.
● This is what we will assume

25

Many design questions....

Many design questions....

● How do we ensure the routers in an AS “act as one”?
● The role of border vs. interior routers?
● Interaction between BGP and IGP
● How is all this implemented?

● Route updates and attributes

BGP protocol message types

● Many different message types
● Open
● Keepalive
● Notification
● ...
● Update

● Inform neighbor of new routes
● Inform neighbor of updates to old routes
● “Withdraw” a route that’s now inactive

Route Updates

Route Updates

● Format <IP prefix: route attributes>
● attributes describe properties of the route

Route Attributes

● General mechanism used to express properties about routes
● Used in route selection/export decisions

Route Attributes

● General mechanism used to express properties about routes
● Used in route selection/export decisions

● Some attributes are local to an AS
● Not propagated in eBGP advertisements

Route Attributes

● General mechanism used to express properties about routes
● Used in route selection/export decisions

● Some attributes are local to an AS
● Not propagated in eBGP advertisements

● Others are propagated in eBGP route advertisements

Route Attributes

● General mechanism used to express properties about routes
● Used in route selection/export decisions

● Some attributes are local to an AS
● Not propagated in eBGP advertisements

● Others are propagated in eBGP route advertisements

● There are many standardized attributes in BGP
● We will discuss four important ones

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

AS 7018

AS 25

AS 88

Princeton,
 128.112.0.0/16

Berkeley

ATT

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

AS 7018

AS 25

AS 88

Princeton,
 128.112.0.0/16

Berkeley

ATT

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

IP prefix = 128.112.0.0/16
AS path = 88

AS 7018

AS 25

AS 88

Princeton,
 128.112.0.0/16

Berkeley

ATT

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

IP prefix = 128.112.0.0/16
AS path = 88

AS 7018

AS 25

AS 88

Princeton,
 128.112.0.0/16

Berkeley

ATT

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

IP prefix = 128.112.0.0/16
AS path = 88

AS 7018

AS 25

AS 88

Princeton,
 128.112.0.0/16

Berkeley

ATT

Attributes (1): ASPATH
● Path vector that lists all the ASes a route

advertisement has traversed (in reverse order)
● Carried in route announcements

IP prefix = 128.112.0.0/16
AS path = 88

IP prefix = 128.112.0.0/16
AS path = 7018 88

AS 7018

AS 25

AS 88

Princeton,
 128.112.0.0/16

Berkeley

ATT

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths
● Local to an AS; carried only in iBGP messages
● The higher the value the more that route is preferred

AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths
● Local to an AS; carried only in iBGP messages
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths
● Local to an AS; carried only in iBGP messages
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

IP prefix = 128.112.0.0/16
AS path = 100 88

AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths
● Local to an AS; carried only in iBGP messages
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

IP prefix = 128.112.0.0/16
AS path = 100 88

BGP table at AS 7018:

destination ASPATH LocPref

128.112.0.0/16 100, 88 3000

AS 88
128.112.0.0/16

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths
● Local to an AS; carried only in iBGP messages
● The higher the value the more that route is preferred

AS 7018

AS 100
AS 200

BGP table at AS 7018:

destination ASPATH LocPref

128.112.0.0/16 100, 88 3000

IP prefix = 128.112.0.0/16
AS path = 200 88

Attributes (2): LOCAL PREFERENCE
● Used to choose between different AS paths
● Local to an AS; carried only in iBGP messages
● The higher the value the more that route is preferred

AS 7018

AS 88
128.112/16

AS 100
AS 200

BGP table at AS 7018:

destination ASPATH LocPref

12.112.0.0/16 100, 88 3000
12.112.0.0/16 200, 88 1000

In reality...

Princeton

Berkeley

AT&T

Verizon

In reality...

Princeton

Berkeley

AT&T

Verizon
`

In reality...

Princeton

Berkeley

AT&T

Verizon
`

In reality...

Princeton

Berkeley

AT&T

Verizon
`

Note: both routes follow the same AS path!

In reality...

Princeton

Berkeley

AT&T

Verizon
`

Note: both routes follow the same AS path!

Which route does Verizon prefer?

Attributes (3) : MED

● MED = “Multi-Exit Discriminator”

● Used when ASes are interconnected via 2 or more links to
specify how close a prefix is to the link it is announced on

Attributes (3) : MED

Princeton

Berkeley

AT&T

Verizon

Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon

Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon

Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon
IP prefix = ...
AS path = ...
MED = 10

Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon
IP prefix = ...
AS path = ...
MED = 10

Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)

Princeton

Berkeley

AT&T

Verizon
IP prefix = ...
AS path = ...
MED = 10

IP prefix = ...
AS path = ...
MED = 50

Attributes (3) : MED
● AS announcing prefix sets MED (lower is better)
● AS receiving prefix (optionally!) uses MED to select link

Princeton

Berkeley

AT&T

Verizon
IP prefix = ...
AS path = ...
MED = 10

IP prefix = ...
AS path = ...
MED = 50

More reality...

Princeton

Berkeley

AT&T

Verizon
`

Which route does AT&T prefer?

Attributes (4): IGP cost

● Local to an AS
● Each router selects its closest border router

● Closest based on IGP cost
● a.k.a. “hot potato” routing

hot potato

37

Attributes (4): IGP cost

● Local to an AS
● Each router selects its closest border router

● Closest based on IGP cost
● a.k.a. “hot potato” routing

hot potato

AT&T

Verizon

2 12
4

5
1

1
1 1

37

Attributes (4): IGP cost

● Local to an AS
● Each router selects its closest border router

● Closest based on IGP cost
● a.k.a. “hot potato” routing

hot potato

AT&T

Verizon

2 12
4

5
1

1
1 1

37

Attributes (4): IGP cost

● Local to an AS
● Each router selects its closest border router

● Closest based on IGP cost
● a.k.a. “hot potato” routing

hot potato

AT&T

Verizon

2 12
4

5
1

1
1 1

37

Attributes (4): IGP cost

● Local to an AS
● Each router selects its closest border router

● Closest based on IGP cost
● a.k.a. “hot potato” routing

hot potato

AT&T

Verizon

2 12
4

5
1

1
1 1

37

Attributes (4): IGP cost

● Local to an AS
● Each router selects its closest border router

● Closest based on IGP cost
● a.k.a. “hot potato” routing

hot potato

AT&T

Verizon

2 12
4

5
1

1
1 1

38

Note: IGP may conflict with MED

AT&T

Verizon

2 12
4

5
1

1
1 1

38

Note: IGP may conflict with MED

AT&T

Verizon

2 12
4

5
1

1
1 1

IP prefix = ...
AS path = ...
MED = 10

IP prefix = ...
AS path = ...
MED = 50

IGP-MED conflicts pretty common

Dsf A
B

IGP-MED conflicts pretty common

Dsf A
B

IGP-MED conflicts pretty common

Dsf A
B

IGP-MED conflicts pretty common

Dsf A
B

IGP-MED conflicts pretty common

Dsf A
B

Can lead to asymmetric paths!

Closing the loop...
Typical Selection Policy

● In decreasing order of priority
● make/save money
● maximize performance
● minimize use of my network bandwidth
● …
● …

Closing the loop...
Typical Selection Policy

● In decreasing order of priority
● make/save money: LOCAL PREF (cust > peer > provider)
● maximize performance: length of ASPATH
● minimize use of my network bandwidth: “hot potato”, MED
● …
● …

Using Attributes

● Rules for route selection in priority order

Priority Rule Remarks
1 LOCAL PREF Pick highest LOCAL PREF
2 ASPATH Pick shortest ASPATH length
3 IGP path Lowest IGP cost to next hop

(egress router)
4 MED MED preferred
5 Router ID Smallest next-hop router’s IP

address as tie-breaker

Questions?

43

Outline

● Context
● Goals
● Approach
● Detailed design
● Limitations

Issues with BGP

Issues with BGP

● Security
No guarantee that an AS owns the prefixes it advertises!
No guarantee that an AS will follow the path it advertises

Issues with BGP

● Security
No guarantee that an AS owns the prefixes it advertises!
No guarantee that an AS will follow the path it advertises

● Performance (non?)issues
Policy-based paths not necessarily shortest/least-cost
S path length can be misleading

Issues with BGP

● Security
No guarantee that an AS owns the prefixes it advertises!
No guarantee that an AS will follow the path it advertises

● Performance (non?)issues
Policy-based paths not necessarily shortest/least-cost
S path length can be misleading

● Prone to misconfiguration
Many attributes; configuration often manual and ad-hoc
GP misconfigurations a major source of Internet outages!

Issues with BGP

● Security
No guarantee that an AS owns the prefixes it advertises!
No guarantee that an AS will follow the path it advertises

● Performance (non?)issues
Policy-based paths not necessarily shortest/least-cost
S path length can be misleading

● Prone to misconfiguration
Many attributes; configuration often manual and ad-hoc
GP misconfigurations a major source of Internet outages!

● Reachability and Convergence
Not guaranteed if Gao-Rexford doesn’t hold
Example of policy oscillations in discussion section

Issues with BGP

● Security
● No guarantee that an AS owns the prefixes it advertises!
● No guarantee that an AS will follow the path it advertises

● Performance (non?)issues

Issues with BGP

● Security
● No guarantee that an AS owns the prefixes it advertises!
● No guarantee that an AS will follow the path it advertises

● Performance (non?)issues
● Policy-based paths not necessarily shortest/least-cost
● AS path length can be misleading

● Prone to misconfiguration

Issues with BGP

● Security
● No guarantee that an AS owns the prefixes it advertises!
● No guarantee that an AS will follow the path it advertises

● Performance (non?)issues
● Policy-based paths not necessarily shortest/least-cost
● AS path length can be misleading

● Prone to misconfiguration
● Many attributes; configuration often manual and ad-hoc
● BGP misconfigurations a major source of Internet outages!

● Reachability and Convergence

Issues with BGP

● Security
● No guarantee that an AS owns the prefixes it advertises!
● No guarantee that an AS will follow the path it advertises

● Performance (non?)issues
● Policy-based paths not necessarily shortest/least-cost
● AS path length can be misleading

● Prone to misconfiguration
● Many attributes; configuration often manual and ad-hoc
● BGP misconfigurations a major source of Internet outages!

● Reachability and Convergence
● Not guaranteed if Gao-Rexford doesn’t hold
● Example of policy oscillations in discussion section

Questions?

47

Taking Stock: We’ve done...

● An end-to-end overview of the Internet arch.

● How L3 works
● IP addressing and routers
● Intra-domain routing
● Inter-domain routing

● Last topic: the IP header
● At which point, you’ll know how L3 works!

Let’s design the IP header

● Syntax: format of an IP packet
● Nontrivial part: header
● Rest is opaque payload

● Semantics: meaning of IP header fields
● How they’re processed

49

Header Payload

Recall: Layering

L4 (transport) Add Transport header
(e.g., TCP)

L3 (network)
 Add Network header

(e.g., IP)

L1+L2 Add L2 header
(e.g., Ethernet)

L7 (app) Take data, add app header
(e.g., HTTP)

Host A Host B

Recall: Layering

L4 (transport) Add Transport header
(e.g., TCP)

L3 (network)
 Add Network header

(e.g., IP)

L1+L2 Add L2 header
(e.g., Ethernet)

L7 (app) Take data, add app header
(e.g., HTTP)

Host A Host B

Recall: Hosts vs. Routers

IP

HTTP HTTP

TCP TCP

IPIP IP

host host

router router

HTTP messages

TCP bytestreams

IP packet IP packetIP packet

Ethernet
interface

Ethernet
interface

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

Ethernet
 frames

Ethernet
frames

SONET
frames

Recall: Hosts vs. Routers

IP

HTTP HTTP

TCP TCP

IPIP IP

host host

router router

HTTP messages

TCP bytestreams

IP packet IP packetIP packet

Ethernet
interface

Ethernet
interface

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

Ethernet
 frames

Ethernet
frames

SONET
frames

Designing the IP header

● Think of the IP header as an interface
● between the source and network (routers)
● between the source and destination endhosts

Designing the IP header

● Think of the IP header as an interface
● between the source and network (routers)
● between the source and destination endhosts

● Designing an interface
● what task(s) are we trying to accomplish?
● what information is needed to do it?

Designing the IP header

● Think of the IP header as an interface
● between the source and network (routers)
● between the source and destination endhosts

● Designing an interface
● what task(s) are we trying to accomplish?
● what information is needed to do it?

● Header reflects information needed for basic tasks

What are these tasks?
(at a router, at the destination host)

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)
● Tell destination what to do next (dst host)

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)
● Tell destination what to do next (dst host)

Next: what information do we need?

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)
● Tell destination what to do next (dst host)
● Get responses back to the source (dst host, router)

Next: what information do we need?

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)
● Tell destination what to do next (dst host)
● Get responses back to the source (dst host, router)

● Deal with problems along the way (router, dst host)

Next: what information do we need?

What are these tasks?
(at a router, at the destination host)

● Parse packet (router, dst host)
● Forward packet to the L3 destination (router)
● Tell destination what to do next (dst host)
● Get responses back to the source (dst host, router)

● Deal with problems along the way (router, dst host)
● Specify any special handling (router, dst host)

Next: what information do we need?

Parse Packet Correctly

54

Parse Packet Correctly

● What version of IP?

54

Parse Packet Correctly

● What version of IP?

● Where does header end?

54

Parse Packet Correctly

● What version of IP?

● Where does header end?

● Where does packet end?

54

Deliver packet to the L3 destination

55

Deliver packet to the L3 destination

● Provide destination address (duh!)

55

Tell the destination how to handle packet

Tell the destination how to handle packet

Application

Transport

Network

Data link

Physical

SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN

Tell the destination how to handle packet

Application

Transport

Network

Data link

Physical

SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN

Tell the destination how to handle packet

● Indicate which protocol should handle packet next

Application

Transport

Network

Data link

Physical

SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN

Tell the destination how to handle packet

● Indicate which protocol should handle packet next
● Protocol field: identifies the higher-level protocol

● Important for de-multiplexing at receiving host

Application

Transport

Network

Data link

Physical

SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN

● Protocol field that identifies the L4 protocol for this packet
● Common examples

● “6” for the Transmission Control Protocol (TCP)
● “17” for the User Datagram Protocol (UDP)

IP header IP header
TCP header UDP header

protocol=6 protocol=17

Tell the destination how to handle packet

Get responses back to the source

Get responses back to the source

● Source IP address

Where are we ...

● Parse packet ! version, header length, packet length
● Forward packet to the L3 dst ! destination address
● Tell destination what to do next ! protocol field
● Get responses back to the source ! source address

● Deal with problems along the way
● Specify any special handling

What problems?

What problems?

● Loops

What problems?

● Loops
● Corruption

What problems?

● Loops
● Corruption
● Packet too large (> MTU)

Preventing Loops

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Means header must
include source IP address

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Means header must
include source IP address

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Means header must
include source IP address

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Means header must
include source IP address

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

Means header must
include source IP address

Preventing Loops

● Forwarding loops cause packets to cycle for a looong time
● left unchecked would accumulate to consume all capacity

● Time-to-Live (TTL) field
● decremented at each hop, packet discarded if reaches 0
● …and “time exceeded” message is sent to the source

Means header must
include source IP address

Header Corruption

Header Corruption

● Checksum

Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

● If not correct, router/destination discards packets
● So it doesn’t act on bogus information

Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

● If not correct, router/destination discards packets
● So it doesn’t act on bogus information

● Checksum updated at every router

Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

● If not correct, router/destination discards packets
● So it doesn’t act on bogus information

● Checksum updated at every router
● Why?

Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

● If not correct, router/destination discards packets
● So it doesn’t act on bogus information

● Checksum updated at every router
● Why?
● Why include TTL?

Header Corruption

● Checksum
● Small #bits used to check integrity of some data (e.g., hash)
● Particular form of checksum over packet header

● If not correct, router/destination discards packets
● So it doesn’t act on bogus information

● Checksum updated at every router
● Why?
● Why include TTL?
● Why only header?

Fragmentation

● Every link has a “Maximum Transmission Unit” (MTU)
● largest number of bits it can carry as one unit

Fragmentation

● Every link has a “Maximum Transmission Unit” (MTU)
● largest number of bits it can carry as one unit

● A router can split a packet into multiple “fragments” if
the packet size exceeds the link’s MTU

hdr 3980

hdr 1480 hdr 1200 hdr 1300

Fragmentation

● Every link has a “Maximum Transmission Unit” (MTU)
● largest number of bits it can carry as one unit

● A router can split a packet into multiple “fragments” if
the packet size exceeds the link’s MTU

● Must reassemble to recover original packet

hdr 3980

hdr 1480 hdr 1200 hdr 1300

Fragmentation

● Every link has a “Maximum Transmission Unit” (MTU)
● largest number of bits it can carry as one unit

● A router can split a packet into multiple “fragments” if
the packet size exceeds the link’s MTU

● Must reassemble to recover original packet

hdr 3980

hdr 1480 hdr 1200 hdr 1300

Details of fragmentation will be covered in section

Where are we ...

● Parse packet ! version, header length, packet length
● Forward packet to the L3 dst ! destination address
● Tell destination what to do next ! protocol field
● Get responses back to the source ! source address

● Deal with problems along the way
! TTL, source address, checksum, frag. fields (TBD)

● Specify any special handling

What forms of special treatment?

What forms of special treatment?

● Don’t treat all packets the same (“Type of Service”)
● Idea: treat packets based on app/customer needs

What forms of special treatment?

● Don’t treat all packets the same (“Type of Service”)
● Idea: treat packets based on app/customer needs

● “Options”
● Request advanced functionality for this packet

“Type of Service” (ToS)

“Type of Service” (ToS)

● Originally: multiple bits used to request different forms
of packet delivery
● Based on priority, delay, throughput, reliability, or cost
● Frequently redefined, never fully deployed
● Only notion of priorities remained

“Type of Service” (ToS)

● Originally: multiple bits used to request different forms
of packet delivery
● Based on priority, delay, throughput, reliability, or cost
● Frequently redefined, never fully deployed
● Only notion of priorities remained

● Today:
● Differentiated Services Code Point (DSCP): traffic “classes”
● Explicit Congestion Notification (ECN): a later lecture

Options

Options

● Optional directives to the network

● Examples
● Record Route, Source Route, Timestamp, ...

Options

● Optional directives to the network

● Examples
● Record Route, Source Route, Timestamp, ...

● More complex implementation
● Leads to variable length headers
● Often leads to higher processing overheads

Where are we ...

● Parse packet ! version, header length, packet length
● Forward packet to the L3 dst ! destination address
● Tell destination what to do next ! protocol field
● Get responses back to the source ! source address

● Deal with problems along the way
! TTL, source address, checksum, frag. fields (TBD)

● Specify any special handling ! ToS, options

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

32 bits

Two remaining topics (next time)

● IPv4 ! IPv6
● Security implications of the IP header

Questions?

71

