
Project 2: Traceroute

• Project 2 (Traceroute) is out
• Due Friday, March 22nd at 11:59 PM PST
• Project 2 is hard(er)

• Start Early
• Don’t expect a perfect score

• Ethan Jackson is the lead TA.
• See the website for his office hours.

TCP Congestion Control (contd.)

CS 168
http://cs168.io

Sylvia Ratnasamy

http://cs168.io/

TCP Congestion Control (contd.)

CS 168
http://cs168.io

Sylvia Ratnasamy

http://cs168.io/

Today
● The TCP state machine
● Modeling TCP throughput
● Critiquing TCP

● Router-assisted CC (briefly)

TCP Implementation

TCP Implementation

TCP Implementation

● State at sender
● CWND (initialized to a 1 MSS)
● SSTHRESH (initialized to a large constant)
● dupACKcount (initialized to zero, as before)
● Timer (as before)

TCP Implementation

● State at sender
● CWND (initialized to a 1 MSS)
● SSTHRESH (initialized to a large constant)
● dupACKcount (initialized to zero, as before)
● Timer (as before)

● Events at sender
● ACK (for new data)
● dupACK (duplicate ACK for old data)
● Timeout

TCP Implementation

● State at sender
● CWND (initialized to a 1 MSS)
● SSTHRESH (initialized to a large constant)
● dupACKcount (initialized to zero, as before)
● Timer (as before)

● Events at sender
● ACK (for new data)
● dupACK (duplicate ACK for old data)
● Timeout

● What about receiver?
● Just send ACKs like before

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

• CWND packets per RTT
• Hence after one RTT

with no drops:
 CWND = 2xCWND

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

Slow start phase

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

Slow start phase

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else
● CWND = CWND + 1/CWND

Slow start phase

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else
● CWND = CWND + 1/CWND

Slow start phase

• CWND packets per RTT
• Hence after one RTT

with no drops:
 CWND = CWND + 1

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else
● CWND = CWND + 1/CWND

Slow start phase

“Congestion
Avoidance” phase
(additive increase)

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else
● CWND = CWND + 1/CWND

● Plus the usual ...
● Reset timer, dupACKcount
● Send new data packets (if CWND allows)

Slow start phase

“Congestion
Avoidance” phase
(additive increase)

Event: TimeOut

● On Timeout
● SSTHRESH CWND/2
● CWND 1
● And retransmit packet (as always)

Event: TimeOut

● On Timeout
● SSTHRESH CWND/2
● CWND 1
● And retransmit packet (as always)

Event: dupACK

Event: dupACK

Event: dupACK

● dupACKcount ++

Event: dupACK

● dupACKcount ++

● If dupACKcount = 3 /* fast retransmit */
● SSTHRESH = CWND/2
● CWND = CWND/2 (but never less than 1)
● And retransmit packet (as always)

Event: dupACK

● dupACKcount ++

● If dupACKcount = 3 /* fast retransmit */
● SSTHRESH = CWND/2
● CWND = CWND/2 (but never less than 1)
● And retransmit packet (as always)

Remain in AIMD
after fast retransmission…

Any Questions?

9

Any Questions?

9

Time Diagram

10

t

Window

Time Diagram

10

t

Window

Time Diagram

10

t

Window
Fast

Retransmission

Time Diagram

10

t

Window
TimeoutFast

Retransmission

Time Diagram

10

t

Window
TimeoutFast

Retransmission

Time Diagram

10

t

Window
TimeoutFast

Retransmission
SSThresh

Set to Here

Time Diagram

10

t

Window

Slow start in operation until
CWND crosses SSTHRESH

TimeoutFast
Retransmission

SSThresh
Set to Here

Time Diagram

10

t

Window

Slow start in operation until
CWND crosses SSTHRESH

TimeoutFast
Retransmission

SSThresh
Set to Here

One Final Phase: Fast Recovery

One Final Phase: Fast Recovery

One Final Phase: Fast Recovery

● The problem: congestion avoidance too slow in
recovering from an isolated loss

One Final Phase: Fast Recovery

● The problem: congestion avoidance too slow in
recovering from an isolated loss

● This last feature is an optimization to improve
performance
● Bit of a hack, but effective

Example

Example

Example

● Again: counting packets, not bytes
● If you want example in bytes, assume MSS=1000 and add three

zeros to all sequence numbers

Example

● Again: counting packets, not bytes
● If you want example in bytes, assume MSS=1000 and add three

zeros to all sequence numbers

● Consider a TCP connection with:
● CWND=10 packets
● Last ACK was for packet # 101

● i.e., receiver expecting next packet to have seq. no. 101

● 10 packets [101, 102, 103,…, 110] are in flight
● Packet 101 is dropped
● What ACKs do they generate and how does the sender respond?

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 ✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 ✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)

✗ 101

Note that you do not
restart dupACK counter
on same packet!

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)
● ACK 101 (due to 108) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)
● ACK 101 (due to 108) cwnd=5 (no xmit)
● ACK 101 (due to 109) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)
● ACK 101 (due to 108) cwnd=5 (no xmit)
● ACK 101 (due to 109) cwnd=5 (no xmit)
● ACK 101 (due to 110) cwnd=5 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)
● ACK 101 (due to 108) cwnd=5 (no xmit)
● ACK 101 (due to 109) cwnd=5 (no xmit)
● ACK 101 (due to 110) cwnd=5 (no xmit)
● ACK 111 (due to 101) only now can we transmit new packets

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
● ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
● ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5 cwnd= 5
● ACK 101 (due to 105) cwnd=5 (no xmit)
● ACK 101 (due to 106) cwnd=5 (no xmit)
● ACK 101 (due to 107) cwnd=5 (no xmit)
● ACK 101 (due to 108) cwnd=5 (no xmit)
● ACK 101 (due to 109) cwnd=5 (no xmit)
● ACK 101 (due to 110) cwnd=5 (no xmit)
● ACK 111 (due to 101) only now can we transmit new packets
● Plus no packets in flight so no additional ACKs for another RTT

✗ 101

Two Questions

14

Two Questions

14

Two Questions

● Do you understand the problem?
● Have to wait a long time before sending again
● When you finally send, you have to send full window

14

Two Questions

● Do you understand the problem?
● Have to wait a long time before sending again
● When you finally send, you have to send full window

14

Two Questions

● Do you understand the problem?
● Have to wait a long time before sending again
● When you finally send, you have to send full window

14

Two Questions

● Do you understand the problem?
● Have to wait a long time before sending again
● When you finally send, you have to send full window

● How would you fix it?

14

Solution: Fast Recovery

Solution: Fast Recovery

Solution: Fast Recovery
Idea: Grant the sender temporary “credit” for each dupACK
so as to keep packets in flight

Solution: Fast Recovery
Idea: Grant the sender temporary “credit” for each dupACK
so as to keep packets in flight

● If dupACKcount = 3
● SSTHRESH = CWND/2
● CWND = SSTHRESH + 3

Solution: Fast Recovery
Idea: Grant the sender temporary “credit” for each dupACK
so as to keep packets in flight

● If dupACKcount = 3
● SSTHRESH = CWND/2
● CWND = SSTHRESH + 3

● While in fast recovery
● CWND = CWND + 1 (MSS) for each additional duplicate ACK
● This allows source to send an additional packet…
● …to compensate for the packet that arrived (generating dupACK)

Solution: Fast Recovery
Idea: Grant the sender temporary “credit” for each dupACK
so as to keep packets in flight

● If dupACKcount = 3
● SSTHRESH = CWND/2
● CWND = SSTHRESH + 3

● While in fast recovery
● CWND = CWND + 1 (MSS) for each additional duplicate ACK
● This allows source to send an additional packet…
● …to compensate for the packet that arrived (generating dupACK)

● Exit fast recovery after receiving new ACK
● set CWND = SSTHRESH

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3

✗

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)

✗ 101

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)

✗ 101 111,

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)
● ACK 101 (due to 108) cwnd=12 (xmit 112)

✗ 101 111, 112,

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)
● ACK 101 (due to 108) cwnd=12 (xmit 112)
● ACK 101 (due to 109) cwnd=13 (xmit 113)

✗ 101 111, 112, ...

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)
● ACK 101 (due to 108) cwnd=12 (xmit 112)
● ACK 101 (due to 109) cwnd=13 (xmit 113)
● ACK 101 (due to 110) cwnd=14 (xmit 114)

✗ 101 111, 112, ...

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)
● ACK 101 (due to 108) cwnd=12 (xmit 112)
● ACK 101 (due to 109) cwnd=13 (xmit 113)
● ACK 101 (due to 110) cwnd=14 (xmit 114)
● ACK 111 (due to 101) cwnd = 5 (xmit 115) exiting fast recovery

✗ 101 111, 112, ...

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)
● ACK 101 (due to 108) cwnd=12 (xmit 112)
● ACK 101 (due to 109) cwnd=13 (xmit 113)
● ACK 101 (due to 110) cwnd=14 (xmit 114)
● ACK 111 (due to 101) cwnd = 5 (xmit 115) exiting fast recovery
● Packets 111-114 already in flight (and now sending 115)

✗ 101 111, 112, ...

Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110

● ACK 101 (due to 102) cwnd=10 dupACK#1
● ACK 101 (due to 103) cwnd=10 dupACK#2
● ACK 101 (due to 104) cwnd=10 dupACK#3
● REXMIT 101 ssthresh=5 cwnd= 8 (5+3)
● ACK 101 (due to 105) cwnd= 9 (no xmit)
● ACK 101 (due to 106) cwnd=10 (no xmit)
● ACK 101 (due to 107) cwnd=11 (xmit 111)
● ACK 101 (due to 108) cwnd=12 (xmit 112)
● ACK 101 (due to 109) cwnd=13 (xmit 113)
● ACK 101 (due to 110) cwnd=14 (xmit 114)
● ACK 111 (due to 101) cwnd = 5 (xmit 115) exiting fast recovery
● Packets 111-114 already in flight (and now sending 115)
● ACK 112 (due to 111) cwnd = 5 + 1/5 back in congestion avoidance

✗ 101 111, 112, ...

Updated Event-Actions

17

Updated Event-Actions

17

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● If in fast recovery
● CWND = SSTHRESH

● Else
● CWND = CWND + 1/CWND

● Plus the usual...

Slow start phase

“Congestion
Avoidance” phase
(additive increase)

Leaving Fast
Recovery

Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● If in fast recovery
● CWND = SSTHRESH

● Else
● CWND = CWND + 1/CWND

● Plus the usual...

Slow start phase

“Congestion
Avoidance” phase
(additive increase)

Leaving Fast
Recovery

Event: dupACK

● dupACKcount ++

● If dupACKcount = 3 /* fast retransmit */
● ssthresh = CWND/2
● CWND = CWND/2 +3
● And retransmit packet

● If dupACKcount > 3 /* fast recovery */
● CWND = CWND + 1 (MSS)

Event: dupACK

● dupACKcount ++

● If dupACKcount = 3 /* fast retransmit */
● ssthresh = CWND/2
● CWND = CWND/2 +3
● And retransmit packet

● If dupACKcount > 3 /* fast recovery */
● CWND = CWND + 1 (MSS)

Next: TCP State Machine

20

Next: TCP State Machine

20

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

timeout

timeout

timeout

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

timeout

timeout

new ACK

timeout

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

timeout

new ACK

timeout

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

timeout

new ACK

timeout

dupACK

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

dupACK=3

timeout

new ACK

timeout

dupACK

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

dupACK=3

timeout

new ACK

timeout
new ACK

dupACK

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

dupACK=3

timeout

new ACK

timeout
new ACK

dupACK

dupACK

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

dupACK=3

timeout

dupACK=3
new ACK

timeout
new ACK

dupACK

dupACK

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

dupACK=3

timeout

dupACK=3

dupACK

new ACK

timeout
new ACK

dupACK

dupACK

 TCP State Machine

 slow
start

congestion
avoidance

fast
recovery

CWND > SSTHRESH

timeout

dupACK=3

timeout

dupACK=3

new ACK

dupACK

new ACK

timeout
new ACK

dupACK

dupACK

Many variants

Many variants

Many variants

● TCP-Tahoe
● CWND =1 on triple dupACK

Many variants

● TCP-Tahoe
● CWND =1 on triple dupACK

● TCP-Reno
● CWND =1 on timeout
● CWND = CWND/2 on triple dupack

Many variants

● TCP-Tahoe
● CWND =1 on triple dupACK

● TCP-Reno
● CWND =1 on timeout
● CWND = CWND/2 on triple dupack

● TCP-newReno
● TCP-Reno + improved fast recovery

Many variants

● TCP-Tahoe
● CWND =1 on triple dupACK

● TCP-Reno
● CWND =1 on timeout
● CWND = CWND/2 on triple dupack

● TCP-newReno
● TCP-Reno + improved fast recovery

● TCP-SACK
● incorporates “selective acknowledgements”
● ACKs describe byte ranges received

Many variants

● TCP-Tahoe
● CWND =1 on triple dupACK

● TCP-Reno
● CWND =1 on timeout
● CWND = CWND/2 on triple dupack

● TCP-newReno
● TCP-Reno + improved fast recovery

● TCP-SACK
● incorporates “selective acknowledgements”
● ACKs describe byte ranges received

Our default
assumption

Interoperability

Interoperability

Interoperability

● How can all these algorithms coexist? Don’t we
need a single, uniform standard?

Interoperability

● How can all these algorithms coexist? Don’t we
need a single, uniform standard?

● What happens if I’m using Reno and you are
using Tahoe, and we try to communicate?

Interoperability

● How can all these algorithms coexist? Don’t we
need a single, uniform standard?

● What happens if I’m using Reno and you are
using Tahoe, and we try to communicate?

● What happens if I’m using Tahoe and you are
using SACK?

TCP Throughput Equation

TCP Throughput

TCP Throughput

● Given a path, what TCP throughput can we expect?

TCP Throughput

● Given a path, what TCP throughput can we expect?

● We’ll derive a simple model that expresses TCP
throughput in terms of path properties:
● RTT
● Loss rate, p

time

A Simple Model for TCP Throughput

Losscwnd

A Simple Model for TCP Throughput

● Assume loss occurs whenever CWND reaches 𝑊𝑚𝑎𝑥

A Simple Model for TCP Throughput

● Assume loss occurs whenever CWND reaches 𝑊𝑚𝑎𝑥
● And is detected by duplicate ACKs (i.e., no timeouts)

A Simple Model for TCP Throughput

● Assume loss occurs whenever CWND reaches 𝑊𝑚𝑎𝑥
● And is detected by duplicate ACKs (i.e., no timeouts)

● Hence, evolution of window size:
● (after detecting loss)

● +1 (one RTT later)

● +2 (two RTTs later)

● +3 (three RTTs later)

● ...
● [drop]

●

● +1

1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

𝑊𝑚𝑎𝑥
1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

A Simple Model for TCP Throughput

● Assume loss occurs whenever CWND reaches 𝑊𝑚𝑎𝑥
● And is detected by duplicate ACKs (i.e., no timeouts)

● Hence, evolution of window size:
● (after detecting loss)

● +1 (one RTT later)

● +2 (two RTTs later)

● +3 (three RTTs later)

● ...
● [drop]

●

● +1

1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

𝑊𝑚𝑎𝑥
1
2

𝑊
𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

A Simple Model for TCP Throughput

RTTs
1
2

𝑊
𝑚𝑎𝑥

● Assume loss occurs whenever CWND reaches
● And is detected by duplicate ACKs (i.e., no timeouts)

● Hence, evolution of window size:

● Increase by 1 for RTTs, then drop, then repeat

● Average window size per RTT =

● Average throughput = x

● Remaining step: express in terms of loss rate p

𝑊𝑚𝑎𝑥

1
2

𝑊
𝑚𝑎𝑥

3
4

𝑊
𝑚𝑎𝑥

3
4

𝑊
𝑚𝑎𝑥

𝑀𝑆𝑆
𝑅𝑇 𝑇

𝑊𝑚𝑎𝑥

A Simple Model for TCP Throughput

time

A Simple Model for TCP Throughput

Losscwnd

time

A

A Simple Model for TCP Throughput

Losscwnd

time

A

A Simple Model for TCP Throughput

Losscwnd

On average, one of all packets in shaded region is lost
 (i.e., loss rate is 1/A, where A is #packets in shaded region)

time

A

A Simple Model for TCP Throughput

Losscwnd

𝑝 =
1
𝐴Packet drop rate,

time

A

A Simple Model for TCP Throughput

Losscwnd ½ Wmax RTTs between drops

𝑝 =
1
𝐴Packet drop rate,

time

A

A Simple Model for TCP Throughput

Losscwnd ½ Wmax RTTs between drops

𝑝 =
1
𝐴Packet drop rate,

time

A

A Simple Model for TCP Throughput

Losscwnd ½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTT

𝑝 =
1
𝐴Packet drop rate,

A

A Simple Model for TCP Throughput

Loss

time

cwnd

𝑝 =
1
𝐴Packet drop rate,

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTT

A

A Simple Model for TCP Throughput

Loss

time

cwnd

𝑝 =
1
𝐴Packet drop rate,

3
8

𝑊 2
𝑚𝑎𝑥A =

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTT

A

A Simple Model for TCP Throughput

Loss

time

cwnd

𝑝 =
1
𝐴Packet drop rate,

3
8

𝑊 2
𝑚𝑎𝑥A = 𝑊𝑚𝑎𝑥 =

2 2

3𝑝

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTT

A

A Simple Model for TCP Throughput

Loss

time

cwnd

𝑝 =
1
𝐴Packet drop rate,

3
8

𝑊 2
𝑚𝑎𝑥A =

Average Throughput =

 𝑊𝑚𝑎𝑥 =
2 2

3𝑝

3
4 𝑊𝑚𝑎𝑥 × 𝑀𝑆𝑆

𝑅𝑇 𝑇

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTT

A

A Simple Model for TCP Throughput

Loss

time

cwnd

𝑝 =
1
𝐴Packet drop rate,

3
8

𝑊 2
𝑚𝑎𝑥A =

Average Throughput =

 𝑊𝑚𝑎𝑥 =
2 2

3𝑝

3
4 𝑊𝑚𝑎𝑥 × 𝑀𝑆𝑆

𝑅𝑇 𝑇

½ Wmax RTTs between drops

=

3
4

2 2

3𝑝
× 𝑀𝑆𝑆

𝑅𝑇𝑇

Avg. ¾ Wmax packets per RTT

A

A Simple Model for TCP Throughput

Loss

time

cwnd

𝑝 =
1
𝐴Packet drop rate,

3
8

𝑊 2
𝑚𝑎𝑥A =

Average Throughput =

 𝑊𝑚𝑎𝑥 =
2 2

3𝑝

3
4 𝑊𝑚𝑎𝑥 × 𝑀𝑆𝑆

𝑅𝑇 𝑇

½ Wmax RTTs between drops

=

3
4

2 2

3𝑝
× 𝑀𝑆𝑆

𝑅𝑇𝑇

=

3
2

MSS

RTT 𝑝

Avg. ¾ Wmax packets per RTT

TCP Throughput

● Given a path, what TCP throughput can we expect?

TCP Throughput

● Given a path, what TCP throughput can we expect?

●
TCP throughput is proportional to and

1
RTT

1
𝑝

● RTT is path round-trip time and p is the packet loss rate

TCP Throughput

● Given a path, what TCP throughput can we expect?

●
TCP throughput is proportional to and

1
RTT

1
𝑝

● RTT is path round-trip time and p is the packet loss rate

● Model makes many simplifying assumptions
● Ignores slow-start, assumes fixed RTT, isolated loss, etc.

TCP Throughput

● Given a path, what TCP throughput can we expect?

●
TCP throughput is proportional to and

1
RTT

1
𝑝

● RTT is path round-trip time and p is the packet loss rate

● Model makes many simplifying assumptions
● Ignores slow-start, assumes fixed RTT, isolated loss, etc.

● But leads to some insights (coming up)

Taking Stock: TCP CC

Taking Stock: TCP CC

● (Sender) host based

Taking Stock: TCP CC

● (Sender) host based
● Loss based

Taking Stock: TCP CC

● (Sender) host based
● Loss based
● Adapts every RTT

Taking Stock: TCP CC

● (Sender) host based
● Loss based
● Adapts every RTT
● Starts out in slow start (start small, double every RTT)

Taking Stock: TCP CC

● (Sender) host based
● Loss based
● Adapts every RTT
● Starts out in slow start (start small, double every RTT)
● Adapts based on AIMD (gentle increase, rapid decrease)

Taking Stock: TCP CC

● (Sender) host based
● Loss based
● Adapts every RTT
● Starts out in slow start (start small, double every RTT)
● Adapts based on AIMD (gentle increase, rapid decrease)
● TCP throughput depends on path RTT and loss rate

Throughput =

3
2

MSS

RTT 𝑝

Implications (1): Different RTTs
Throughput =

3
2

MSS

RTT 𝑝

Implications (1): Different RTTs

A1

A2 B2

B1

bottleneck
link

100ms

200ms

Throughput =

3
2

MSS

RTT 𝑝

Implications (1): Different RTTs

● Flows get throughput inversely proportional to RTT
● TCP unfair in the face of heterogeneous RTTs!

A1

A2 B2

B1

bottleneck
link

100ms

200ms

Throughput =

3
2

MSS

RTT 𝑝

Implications (2): Rate-based CC [RFC 5348]

Throughput =

3
2

1

RTT 𝑝

Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”
● repeated swings between W/2 to W

Throughput =

3
2

1

RTT 𝑝

Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”
● repeated swings between W/2 to W

● Some apps would prefer sending at a steady rate
● e.g., streaming apps

Throughput =

3
2

1

RTT 𝑝

Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”
● repeated swings between W/2 to W

● Some apps would prefer sending at a steady rate
● e.g., streaming apps

● A solution: Equation-based Congestion Control
● ditch TCP’s increase/decrease rules and just follow the equation
● measure RTT and drop percentage p, and set rate accordingly

Throughput =

3
2

1

RTT 𝑝

Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”
● repeated swings between W/2 to W

● Some apps would prefer sending at a steady rate
● e.g., streaming apps

● A solution: Equation-based Congestion Control
● ditch TCP’s increase/decrease rules and just follow the equation
● measure RTT and drop percentage p, and set rate accordingly

Throughput =

3
2

1

RTT 𝑝

Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”
● repeated swings between W/2 to W

● Some apps would prefer sending at a steady rate
● e.g., streaming apps

● A solution: Equation-based Congestion Control
● ditch TCP’s increase/decrease rules and just follow the equation
● measure RTT and drop percentage p, and set rate accordingly

● Following the TCP equation ensures we’re “TCP friendly”
● i.e., use no more than TCP does in similar setting

Throughput =

3
2

1

RTT 𝑝

(3) Loss not due to congestion?

● TCP will confuse corruption with congestion

(3) Loss not due to congestion?

● TCP will confuse corruption with congestion

● Flow will cut its rate

●
Throughput ~ even for non-congestion losses!

1
𝑝

(4) How do short flows fare?

(4) How do short flows fare?

● 50% of flows have < 1500B to send; 80% < 100KB

(4) How do short flows fare?

● 50% of flows have < 1500B to send; 80% < 100KB

● Implication (1): many flows never leave slow start!
● Short flows never attain their fair share
● In fact, short flows are likely to suffer unduly long transfer times

(4) How do short flows fare?

● 50% of flows have < 1500B to send; 80% < 100KB

● Implication (1): many flows never leave slow start!
● Short flows never attain their fair share
● In fact, short flows are likely to suffer unduly long transfer times

(4) How do short flows fare?

● 50% of flows have < 1500B to send; 80% < 100KB

● Implication (1): many flows never leave slow start!
● Short flows never attain their fair share
● In fact, short flows are likely to suffer unduly long transfer times

● Implication (2): too few packets to trigger dupACKs
● Isolated loss may lead to timeouts
● At typical timeout values of ~500ms, might severely impact

flow completion time

(4) How do short flows fare?

● 50% of flows have < 1500B to send; 80% < 100KB

● Implication (1): many flows never leave slow start!
● Short flows never attain their fair share
● In fact, short flows are likely to suffer unduly long transfer times

● Implication (2): too few packets to trigger dupACKs
● Isolated loss may lead to timeouts
● At typical timeout values of ~500ms, might severely impact

flow completion time

● A partial fix: use a higher initial CWND [RFC IW10]

(5) TCP fills up queues long
delays

(5) TCP fills up queues long
delays

● A flow deliberately overshoots capacity, until it
experiences a drop

(5) TCP fills up queues long
delays

● A flow deliberately overshoots capacity, until it
experiences a drop

● Recall: loss follows delay (i.e,. queue must fill up)

(5) TCP fills up queues long
delays

● A flow deliberately overshoots capacity, until it
experiences a drop

● Recall: loss follows delay (i.e,. queue must fill up)

● Means that delays are large, for everyone
● Consider a flow transferring a 10GB file sharing a

bottleneck link with 10 flows transferring 100B

(5) TCP fills up queues long
delays

● A flow deliberately overshoots capacity, until it
experiences a drop

● Recall: loss follows delay (i.e,. queue must fill up)

● Means that delays are large, for everyone
● Consider a flow transferring a 10GB file sharing a

bottleneck link with 10 flows transferring 100B

● Problem exacerbated by the trend towards adding large
amounts of memory on routers (a.k.a. “bufferbloat”)

(5) TCP fills up queues long
delays

● Focus of Google’s BBR algorithm1

1 BBR: Congestion-Based Congestion Control; Cardwell et al, ACM Queue 2016

https://queue.acm.org/detail.cfm?id=3022184
https://queue.acm.org/detail.cfm?id=3022184

(5) TCP fills up queues long
delays

● Focus of Google’s BBR algorithm1

● Basic idea (simplified):
● Sender learns its minimum RTT (~ propagation RTT)
● Decreases its rate when the observed RTT exceeds the

minimum RTT

1 BBR: Congestion-Based Congestion Control; Cardwell et al, ACM Queue 2016

https://queue.acm.org/detail.cfm?id=3022184
https://queue.acm.org/detail.cfm?id=3022184

(6) Cheating

(6) Cheating

● Three easy ways to cheat
● Increasing CWND faster than +1 MSS per RTT

Increasing CWND Faster

Limit rates:
x = 2y

C

x

y
x increases by 2 per RTT
y increases by 1 per RTT

(6) Cheating

(6) Cheating

● Three easy ways to cheat
● Increasing CWND faster than +1 MSS per RTT
● Opening many connections

Open Many Connections

A B
x

D E
y

Assume
• A starts 10 connections to B
• D starts 1 connection to E
• Each connection gets about the same throughput

Then A gets 10 times more throughput than D

(6) Cheating

(6) Cheating

● Three easy ways to cheat
● Increasing CWND faster than +1 MSS per RTT
● Opening many connections
● Using large initial CWND

Why hasn’t the Internet suffered
another congestion collapse?

Why hasn’t the Internet suffered
another congestion collapse?

● Even “cheaters” do back off!
● Leads to unfairness, not necessarily collapse

Why hasn’t the Internet suffered
another congestion collapse?

● Even “cheaters” do back off!
● Leads to unfairness, not necessarily collapse

Why hasn’t the Internet suffered
another congestion collapse?

● Even “cheaters” do back off!
● Leads to unfairness, not necessarily collapse

● Hard to say whether unfair behavior is common

(7) CC intertwined with reliability

(7) CC intertwined with reliability

● Mechanisms for CC and reliability are tightly coupled
● CWND adjusted based on ACKs and timeouts
● Cumulative ACKs and fast retransmit/recovery rules

(7) CC intertwined with reliability

● Mechanisms for CC and reliability are tightly coupled
● CWND adjusted based on ACKs and timeouts
● Cumulative ACKs and fast retransmit/recovery rules

● Complicates evolution
● Consider changing from cumulative to selective ACKs
● A failure of modularity, not layering

(7) CC intertwined with reliability

● Mechanisms for CC and reliability are tightly coupled
● CWND adjusted based on ACKs and timeouts
● Cumulative ACKs and fast retransmit/recovery rules

● Complicates evolution
● Consider changing from cumulative to selective ACKs
● A failure of modularity, not layering

● Sometimes we want CC but not reliability
● e.g., real-time audio/video

(7) CC intertwined with reliability

● Mechanisms for CC and reliability are tightly coupled
● CWND adjusted based on ACKs and timeouts
● Cumulative ACKs and fast retransmit/recovery rules

● Complicates evolution
● Consider changing from cumulative to selective ACKs
● A failure of modularity, not layering

● Sometimes we want CC but not reliability
● e.g., real-time audio/video

● Sometimes we want reliability but not CC (?)

(7) CC intertwined with reliability

● Mechanisms for CC and reliability are tightly coupled
● CWND adjusted based on ACKs and timeouts
● Cumulative ACKs and fast retransmit/recovery rules

● Complicates evolution
● Consider changing from cumulative to selective ACKs
● A failure of modularity, not layering

● Sometimes we want CC but not reliability
● e.g., real-time audio/video

● Sometimes we want reliability but not CC (?)

Recap: TCP problems

Recap: TCP problems

● Misled by non-congestion losses
● Fills up queues leading to high delays
● Short flows complete before discovering available capacity
● Sawtooth discovery too choppy for some apps
● Unfair under heterogeneous RTTs
● Tight coupling with reliability mechanisms
● Endhosts can cheat

Recap: TCP problems

● Misled by non-congestion losses
● Fills up queues leading to high delays
● Short flows complete before discovering available capacity
● Sawtooth discovery too choppy for some apps
● Unfair under heterogeneous RTTs
● Tight coupling with reliability mechanisms
● Endhosts can cheat

Could fix many of these with some help from routers!

Recap: TCP problems

● Misled by non-congestion losses
● Fills up queues leading to high delays
● Short flows complete before discovering available capacity
● Sawtooth discovery too choppy for some apps
● Unfair under heterogeneous RTTs
● Tight coupling with reliability mechanisms
● Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endhosts about
congestion (fine- or coarse-

grained feedback)

Recap: TCP problems

● Misled by non-congestion losses
● Fills up queues leading to high delays
● Short flows complete before discovering available capacity
● Sawtooth discovery too choppy for some apps
● Unfair under heterogeneous RTTs
● Tight coupling with reliability mechanisms
● Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endhosts about
congestion (fine- or coarse-

grained feedback)

Routers enforce
fair sharing

Router-Assisted Congestion Control

● Three ways routers can help
● Enforce fairness
● More precise rate adaptation
● Detecting congestion

How can routers ensure each flow gets its
“fair share”?

Fairness: General Approach

Fairness: General Approach

● Consider a single router’s actions

Fairness: General Approach

● Consider a single router’s actions

● Router classifies incoming packets into “flows”
● (For now) let’s assume flows are TCP connections

Fairness: General Approach

● Consider a single router’s actions

● Router classifies incoming packets into “flows”
● (For now) let’s assume flows are TCP connections

● Each flow has its own FIFO queue in router

● Router picks a queue (i.e., flow) in a fair order; transmits
packet from the front of the queue

Fairness: General Approach

● Consider a single router’s actions

● Router classifies incoming packets into “flows”
● (For now) let’s assume flows are TCP connections

● Each flow has its own FIFO queue in router

● Router picks a queue (i.e., flow) in a fair order; transmits
packet from the front of the queue

Fairness: General Approach

● Consider a single router’s actions

● Router classifies incoming packets into “flows”
● (For now) let’s assume flows are TCP connections

● Each flow has its own FIFO queue in router

● Router picks a queue (i.e., flow) in a fair order; transmits
packet from the front of the queue

● What does “fair” mean exactly?

Max-Min Fairness

Max-Min Fairness

● Total available bandwidth C

Max-Min Fairness

● Total available bandwidth C

● Each flow i has bandwidth demand ri

Max-Min Fairness

● Total available bandwidth C

● Each flow i has bandwidth demand ri

r1

r2

r3

?
?

?
C bits/s

Max-Min Fairness

● Total available bandwidth C

● Each flow i has bandwidth demand ri

● What is a fair allocation ai of bandwidth to each flow i ?

r1

r2

r3

?
?

?
C bits/s

Max-Min Fairness

● Total available bandwidth C

● Each flow i has bandwidth demand ri

● What is a fair allocation ai of bandwidth to each flow i ?

● Max-min bandwidth allocations are:

 ai = min(f, ri)

r1

r2

r3

?
?

?
C bits/s

Max-Min Fairness

● Total available bandwidth C

● Each flow i has bandwidth demand ri

● What is a fair allocation ai of bandwidth to each flow i ?

● Max-min bandwidth allocations are:

 ai = min(f, ri)

 where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s

Example

Example
● C = 10; N = 3; r1 = 8, r2 = 6, r3 = 2

Example
● C = 10; N = 3; r1 = 8, r2 = 6, r3 = 2

● C/N = 10/3 = 3.33 →
● But r3’s need is only 2
● Can service all of r3
● Allocate 2 to r3 and remove it from accounting: C = C – r3 = 8; N = 2

Example
● C = 10; N = 3; r1 = 8, r2 = 6, r3 = 2

● C/N = 10/3 = 3.33 →
● But r3’s need is only 2
● Can service all of r3
● Allocate 2 to r3 and remove it from accounting: C = C – r3 = 8; N = 2

● C/2 = 4 →
● Can’t service all of r1 or r2
● So hold them to the remaining fair share: f = 4

Example
● C = 10; N = 3; r1 = 8, r2 = 6, r3 = 2

● C/N = 10/3 = 3.33 →
● But r3’s need is only 2
● Can service all of r3
● Allocate 2 to r3 and remove it from accounting: C = C – r3 = 8; N = 2

● C/2 = 4 →
● Can’t service all of r1 or r2
● So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

Max-Min Fairness

● Property:
● If you don’t get full demand, no one gets more than you

Max-Min Fairness

● Property:
● If you don’t get full demand, no one gets more than you

● This is what round-robin service gives if all packets
are the same size

How do we deal with packets of
different sizes?

How do we deal with packets of
different sizes?

● Mental model: Bit-by-bit round robin (“fluid flow”)

How do we deal with packets of
different sizes?

● Mental model: Bit-by-bit round robin (“fluid flow”)

● Cannot do this in practice!

How do we deal with packets of
different sizes?

● Mental model: Bit-by-bit round robin (“fluid flow”)

● Cannot do this in practice!

● But we can approximate it
● This is what “fair queuing” routers do

Fair Queuing (FQ)

Fair Queuing (FQ)

● For each packet, compute the time at which the last bit of
a packet would have left the router if flows are served bit-
by-bit (called “deadlines”)

Fair Queuing (FQ)

● For each packet, compute the time at which the last bit of
a packet would have left the router if flows are served bit-
by-bit (called “deadlines”)

● Then serve packets in increasing order of their deadlines

Fair Queuing (FQ)

● For each packet, compute the time at which the last bit of
a packet would have left the router if flows are served bit-
by-bit (called “deadlines”)

● Then serve packets in increasing order of their deadlines

● Think of it as an implementation of round-robin extended
to the case where not all packets are equal sized

Fair Queuing (FQ)

● For each packet, compute the time at which the last bit of
a packet would have left the router if flows are served bit-
by-bit (called “deadlines”)

● Then serve packets in increasing order of their deadlines

● Think of it as an implementation of round-robin extended
to the case where not all packets are equal sized

Example

1 2 3 4 5

1 2 3 4 5 6Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

time

time

Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

5 6Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid
system

time

time

time

Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid
system

FQ
Packet
system

time

time

time

time

FQ vs. FIFO

FQ vs. FIFO
● FQ advantages:

● Isolation: cheating flows don’t benefit
● Bandwidth share does not depend on RTT
● Flows can pick any rate adjustment scheme they want

FQ vs. FIFO
● FQ advantages:

● Isolation: cheating flows don’t benefit
● Bandwidth share does not depend on RTT
● Flows can pick any rate adjustment scheme they want

FQ vs. FIFO
● FQ advantages:

● Isolation: cheating flows don’t benefit
● Bandwidth share does not depend on RTT
● Flows can pick any rate adjustment scheme they want

● Disadvantages:
● More complex than FIFO: per flow queue/state,

additional per-packet book-keeping
● Still only a partial solution (coming up)

Fair Queuing In Practice

Fair Queuing In Practice

● “Pure” FQ too complex to implement at high speeds

Fair Queuing In Practice

● “Pure” FQ too complex to implement at high speeds

● But several approximations exist
● E.g., Deficit Round Robin (DRR)

Fair Queuing In Practice

● “Pure” FQ too complex to implement at high speeds

● But several approximations exist
● E.g., Deficit Round Robin (DRR)

● Today:
● Routers typically implement approximate FQ (e.g., DRR)
● For a small number of queues
● Commonly used for coarser-grained isolation (e.g., for

select customer prefixes) rather than per-flow isolation

FQ in the big picture

● FQ does not eliminate congestion it just
manages the congestion

FQ in the big picture

● FQ does not eliminate congestion it just
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

FQ in the big picture

● FQ does not eliminate congestion it just
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
 0.5Gbps; any excess

will be dropped

FQ in the big picture

● FQ does not eliminate congestion it just
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
 0.5Gbps; any excess

will be dropped

Will drop an additional
400Mbps from
the green flow

FQ in the big picture

● FQ does not eliminate congestion it just
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
 0.5Gbps; any excess

will be dropped

Will drop an additional
400Mbps from
the green flow

If the green flow doesn’t drop its sending
rate to 100Mbps, we’re wasting 400Mbps

that could be usefully given to the blue flow

FQ in the big picture

● FQ does not eliminate congestion it just manages
the congestion

● FQ’s benefit is its resilience (to cheating, variations in
RTT, details of delay, reordering, etc.)

FQ in the big picture

● FQ does not eliminate congestion it just manages
the congestion

● FQ’s benefit is its resilience (to cheating, variations in
RTT, details of delay, reordering, etc.)

● But congestion and packet drops still occur

FQ in the big picture

● FQ does not eliminate congestion it just manages
the congestion

● FQ’s benefit is its resilience (to cheating, variations in
RTT, details of delay, reordering, etc.)

● But congestion and packet drops still occur

● And we still want end-hosts to discover/adapt to their
fair share!

Per-flow fairness is a controversial goal

Per-flow fairness is a controversial goal

● What if you have 8 flows, and I have 4?
● Why should you get twice the bandwidth

Per-flow fairness is a controversial goal

● What if you have 8 flows, and I have 4?
● Why should you get twice the bandwidth

● What if your flow goes over 4 congested hops, and mine
only goes over 1?
● Shouldn’t you be penalized for using more of scarce bandwidth?

● And at what granularity do we really want fairness?
● TCP connection? Source-Destination pair? Source?

Per-flow fairness is a controversial goal

● What if you have 8 flows, and I have 4?
● Why should you get twice the bandwidth

● What if your flow goes over 4 congested hops, and mine
only goes over 1?
● Shouldn’t you be penalized for using more of scarce bandwidth?

● And at what granularity do we really want fairness?
● TCP connection? Source-Destination pair? Source?

● Nonetheless, FQ/DRR is a great way to ensure isolation
● Avoiding starvation even in the worst cases

Router-Assisted Congestion Control

● Three ways routers can help
● Enforce fairness
● More precise rate adaptation
● Detecting congestion

Why not just let routers tell endhosts
what rate they should use?

Why not just let routers tell endhosts
what rate they should use?

● Packets carry “rate field”

● Routers insert a flow’s fair share f in packet header

Why not just let routers tell endhosts
what rate they should use?

● Packets carry “rate field”

● Routers insert a flow’s fair share f in packet header

● End-hosts set sending rate (or window size) to f

Router-Assisted Congestion Control

● Three ways routers can help
● Enforce fairness
● More precise rate adaptation
● Detecting congestion

Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN)

● Single bit in packet header; set by congested routers
● If data packet has bit set, then ACK has ECN bit set

Explicit Congestion Notification (ECN)

● Single bit in packet header; set by congested routers
● If data packet has bit set, then ACK has ECN bit set

● Many options for when routers set the bit
● Tradeoff between link utilization and packet delay

Explicit Congestion Notification (ECN)

● Single bit in packet header; set by congested routers
● If data packet has bit set, then ACK has ECN bit set

● Many options for when routers set the bit
● Tradeoff between link utilization and packet delay

● Host can react as though it was a drop

Explicit Congestion Notification (ECN)

● Single bit in packet header; set by congested routers
● If data packet has bit set, then ACK has ECN bit set

● Many options for when routers set the bit
● Tradeoff between link utilization and packet delay

● Host can react as though it was a drop

● Advantages:
● Don’t confuse corruption with congestion
● Early indicator of congestion avoid delays
● Lightweight to implement

Explicit Congestion Notification (ECN)

● Single bit in packet header; set by congested routers
● If data packet has bit set, then ACK has ECN bit set

● Many options for when routers set the bit
● Tradeoff between link utilization and packet delay

● Host can react as though it was a drop

● Advantages:
● Don’t confuse corruption with congestion
● Early indicator of congestion avoid delays
● Lightweight to implement

● Today:
● Widely implemented in routers
● Commonly used in datacenters (e.g., Azure)

Recap: Router-Assisted CC

● FQ: routers enforce per-flow fairness

● RCP: routers inform endhosts of their fair share

● ECN: routers set “I’m congested” bit in packets

Perspective: Router-Assisted CC

Perspective: Router-Assisted CC

● Can be highly effective, approaching optimal perf.

Perspective: Router-Assisted CC

● Can be highly effective, approaching optimal perf.

● But deployment is more challenging
● Need support at hosts and routers
● Some require more complex book-keeping at routers
● Some require deployment at every router

Perspective: Router-Assisted CC

● Can be highly effective, approaching optimal perf.

● But deployment is more challenging
● Need support at hosts and routers
● Some require more complex book-keeping at routers
● Some require deployment at every router

● Though worth revisiting in datacenter contexts

Perspective: TCP CC

Perspective: TCP CC

● Not perfect, a little ad-hoc

Perspective: TCP CC

● Not perfect, a little ad-hoc

● But deeply practical/deployable

Perspective: TCP CC

● Not perfect, a little ad-hoc

● But deeply practical/deployable

● Good enough to have raised the bar for the
deployment of new, more optimal, approaches

Perspective: TCP CC

● Not perfect, a little ad-hoc

● But deeply practical/deployable

● Good enough to have raised the bar for the
deployment of new, more optimal, approaches

● Though datacenters are the CC agenda
● different needs and constraints (future lecture)

