
Project 2: Traceroute  

• Project 2 (Traceroute) is out
• Due Friday, March 22nd at 11:59 PM PST
• Project 2 is hard(er)

• Start Early
• Don’t expect a perfect score

• Ethan Jackson is the lead TA.  
• See the website for his office hours.
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Today 
● The TCP state machine  
● Modeling TCP throughput  
● Critiquing TCP 

● Router-assisted CC (briefly)
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TCP Implementation

● State at sender 
● CWND (initialized to a 1 MSS) 
● SSTHRESH (initialized to a large constant) 
● dupACKcount (initialized to zero, as before) 
● Timer (as before) 

● Events at sender 
● ACK (for new data)  
● dupACK (duplicate ACK for old data) 
● Timeout  

● What about receiver?  
● Just send ACKs like before 
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• Hence after one RTT  

with no drops: 
    CWND = 2xCWND
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Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else 
● CWND = CWND + 1/CWND

Slow start phase

• CWND packets per RTT  
• Hence after one RTT  

with no drops: 
    CWND = CWND + 1



Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else 
● CWND = CWND + 1/CWND

Slow start phase

“Congestion  
Avoidance” phase 
(additive increase)



Event: ACK (new data)

● If in slow start
● CWND += 1 (MSS)

● Else 
● CWND = CWND + 1/CWND

● Plus the usual ...  
● Reset timer,  dupACKcount
● Send new data packets (if CWND allows)

Slow start phase

“Congestion  
Avoidance” phase 
(additive increase)



Event: TimeOut

● On Timeout  
● SSTHRESH  CWND/2 
● CWND  1 
● And retransmit packet (as always)



Event: TimeOut

● On Timeout  
● SSTHRESH  CWND/2 
● CWND  1 
● And retransmit packet (as always)
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Event: dupACK

● dupACKcount ++ 

● If dupACKcount = 3 /* fast retransmit  */  
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● CWND = CWND/2 (but never less than 1) 
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Event: dupACK

● dupACKcount ++ 

● If dupACKcount = 3 /* fast retransmit  */  
● SSTHRESH = CWND/2 
● CWND = CWND/2 (but never less than 1) 
● And retransmit packet (as always)

Remain in AIMD  
after fast retransmission…
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One Final Phase: Fast Recovery

● The problem: congestion avoidance too slow in 
recovering from an isolated loss 



One Final Phase: Fast Recovery

● The problem: congestion avoidance too slow in 
recovering from an isolated loss 

● This last feature is an optimization to improve 
performance 
● Bit of a hack, but effective
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Example

● Again: counting packets, not bytes 
● If you want example in bytes, assume MSS=1000 and add three 

zeros to all sequence numbers

● Consider a TCP connection with: 
● CWND=10 packets 
● Last ACK was for packet # 101 

● i.e., receiver expecting next packet to have seq. no. 101 

● 10 packets [101, 102, 103,…, 110] are in flight 
● Packet 101 is dropped 
● What ACKs do they generate and how does the sender respond?
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● ACK 101 (due to 105)  cwnd=5 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)

✗ 101

Note that you do not  
restart dupACK counter 
on same packet!
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Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)
● ACK 101 (due to 108)  cwnd=5 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)
● ACK 101 (due to 108)  cwnd=5 (no xmit)
● ACK 101 (due to 109)  cwnd=5 (no xmit)
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Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)
● ACK 101 (due to 108)  cwnd=5 (no xmit)
● ACK 101 (due to 109)  cwnd=5 (no xmit)
● ACK 101 (due to 110)  cwnd=5 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)
● ACK 101 (due to 108)  cwnd=5 (no xmit)
● ACK 101 (due to 109)  cwnd=5 (no xmit)
● ACK 101 (due to 110)  cwnd=5 (no xmit)
● ACK 111 (due to 101)   only now can we transmit new packets

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
● ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
● ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
● RETRANSMIT 101 ssthresh=5  cwnd= 5
● ACK 101 (due to 105)  cwnd=5 (no xmit)
● ACK 101 (due to 106)  cwnd=5 (no xmit)
● ACK 101 (due to 107)  cwnd=5 (no xmit)
● ACK 101 (due to 108)  cwnd=5 (no xmit)
● ACK 101 (due to 109)  cwnd=5 (no xmit)
● ACK 101 (due to 110)  cwnd=5 (no xmit)
● ACK 111 (due to 101)   only now can we transmit new packets
● Plus no packets in flight so no additional ACKs for another RTT

✗ 101
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Two Questions

● Do you understand the problem? 
● Have to wait a long time before sending again 
● When you finally send, you have to send full window

● How would you fix it?

14
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Solution: Fast Recovery
Idea: Grant the sender temporary “credit” for each dupACK 
so as to keep packets in flight 

● If dupACKcount = 3  
●  SSTHRESH = CWND/2 
●  CWND = SSTHRESH + 3 

● While in fast recovery 
● CWND = CWND + 1 (MSS) for each additional duplicate ACK 
● This allows source to send an additional packet… 
● …to compensate for the packet that arrived (generating dupACK) 

● Exit fast recovery after receiving new ACK 
● set CWND = SSTHRESH



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1

✗



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
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Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2

✗



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
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Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)

✗ 101



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)

✗ 101 111,



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)
● ACK 101 (due to 108)  cwnd=12 (xmit 112)

✗ 101 111, 112,



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)
● ACK 101 (due to 108)  cwnd=12 (xmit 112)
● ACK 101 (due to 109)  cwnd=13 (xmit 113)

✗ 101 111, 112, ...



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)
● ACK 101 (due to 108)  cwnd=12 (xmit 112)
● ACK 101 (due to 109)  cwnd=13 (xmit 113)
● ACK 101 (due to 110)  cwnd=14 (xmit 114)

✗ 101 111, 112, ...



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)
● ACK 101 (due to 108)  cwnd=12 (xmit 112)
● ACK 101 (due to 109)  cwnd=13 (xmit 113)
● ACK 101 (due to 110)  cwnd=14 (xmit 114)
● ACK 111 (due to 101) cwnd = 5 (xmit 115)   exiting fast recovery

✗ 101 111, 112, ...



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)
● ACK 101 (due to 108)  cwnd=12 (xmit 112)
● ACK 101 (due to 109)  cwnd=13 (xmit 113)
● ACK 101 (due to 110)  cwnd=14 (xmit 114)
● ACK 111 (due to 101) cwnd = 5 (xmit 115)   exiting fast recovery
● Packets 111-114 already in flight (and now sending 115)

✗ 101 111, 112, ...



Timeline (at sender)
In flight: 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 

● ACK 101 (due to 102)  cwnd=10  dupACK#1
● ACK 101 (due to 103)  cwnd=10  dupACK#2
● ACK 101 (due to 104)  cwnd=10  dupACK#3
● REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
● ACK 101 (due to 105)  cwnd= 9 (no xmit)
● ACK 101 (due to 106)  cwnd=10 (no xmit)
● ACK 101 (due to 107)  cwnd=11 (xmit 111)
● ACK 101 (due to 108)  cwnd=12 (xmit 112)
● ACK 101 (due to 109)  cwnd=13 (xmit 113)
● ACK 101 (due to 110)  cwnd=14 (xmit 114)
● ACK 111 (due to 101) cwnd = 5 (xmit 115)   exiting fast recovery
● Packets 111-114 already in flight (and now sending 115)
● ACK 112 (due to 111) cwnd = 5 + 1/5   back in congestion avoidance

✗ 101 111, 112, ...
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Event: ACK (new data)

● If in slow start 
● CWND += 1 (MSS) 

● If in fast recovery 
● CWND = SSTHRESH 

● Else  
● CWND = CWND + 1/CWND 

● Plus the usual... 

Slow start phase

“Congestion  
Avoidance” phase 
(additive increase)

Leaving Fast  
Recovery
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Event: dupACK

● dupACKcount ++  

● If dupACKcount = 3 /* fast retransmit  */  
● ssthresh = CWND/2 
● CWND = CWND/2 +3 
● And retransmit packet 

● If dupACKcount > 3 /* fast recovery  */  
● CWND = CWND + 1 (MSS)



Event: dupACK

● dupACKcount ++  

● If dupACKcount = 3 /* fast retransmit  */  
● ssthresh = CWND/2 
● CWND = CWND/2 +3 
● And retransmit packet 

● If dupACKcount > 3 /* fast recovery  */  
● CWND = CWND + 1 (MSS)
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Many variants

● TCP-Tahoe 
● CWND =1 on triple dupACK

● TCP-Reno 
● CWND =1 on timeout 
● CWND = CWND/2 on triple dupack

● TCP-newReno 
● TCP-Reno + improved fast recovery

● TCP-SACK 
● incorporates “selective acknowledgements”   
● ACKs describe byte ranges received 

Our default  
assumption
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Interoperability

● How can all these algorithms coexist? Don’t we 
need a single, uniform standard?

● What happens if I’m using Reno and you are 
using Tahoe, and we try to communicate?

● What happens if I’m using Tahoe and you are 
using SACK? 
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TCP Throughput

● Given a path, what TCP throughput can we expect?

● We’ll derive a simple model that expresses TCP 
throughput in terms of path properties:  
● RTT  
● Loss rate, p
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● Assume loss occurs whenever CWND reaches  
● And is detected by duplicate ACKs (i.e., no timeouts) 

● Hence, evolution of window size:  

● Increase by 1 for  RTTs, then drop, then repeat 

● Average window size per RTT =    

● Average throughput =   x  

● Remaining step: express  in terms of loss rate p 
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On average, one of all packets in shaded region is lost 
 (i.e., loss rate is 1/A, where A is #packets in shaded region)
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TCP Throughput

● Given a path, what TCP throughput can we expect?

●
TCP throughput is proportional to  and 

1
RTT

1
𝑝

● RTT is path round-trip time and p is the packet loss rate

● Model makes many simplifying assumptions 
● Ignores slow-start, assumes fixed RTT, isolated loss, etc.

● But leads to some insights (coming up)
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Taking Stock: TCP CC

● (Sender) host based
● Loss based 
● Adapts every RTT 
● Starts out in slow start (start small, double every RTT)
● Adapts based on AIMD (gentle increase, rapid decrease)
● TCP throughput depends on path RTT and loss rate

Throughput =
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Implications (1): Different RTTs

● Flows get throughput inversely proportional to RTT 
● TCP unfair in the face of heterogeneous RTTs!

A1

A2 B2

B1

bottleneck 
link

100ms

200ms

Throughput =

 

3
2

 
MSS

RTT 𝑝



Implications (2): Rate-based CC [RFC 5348]

Throughput =

 

3
2

 
1

RTT 𝑝



Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”  
● repeated swings between W/2 to W 

Throughput =

 

3
2

 
1

RTT 𝑝



Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”  
● repeated swings between W/2 to W 

● Some apps would prefer sending at a steady rate  
● e.g., streaming apps 

Throughput =

 

3
2

 
1

RTT 𝑝



Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”  
● repeated swings between W/2 to W 

● Some apps would prefer sending at a steady rate  
● e.g., streaming apps 

● A solution: Equation-based Congestion Control  
● ditch TCP’s increase/decrease rules and just follow the equation 
● measure RTT and drop percentage p, and set rate accordingly

Throughput =

 

3
2

 
1

RTT 𝑝



Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”  
● repeated swings between W/2 to W 

● Some apps would prefer sending at a steady rate  
● e.g., streaming apps 

● A solution: Equation-based Congestion Control  
● ditch TCP’s increase/decrease rules and just follow the equation 
● measure RTT and drop percentage p, and set rate accordingly

Throughput =

 

3
2

 
1

RTT 𝑝



Implications (2): Rate-based CC [RFC 5348]

● TCP throughput is “choppy”  
● repeated swings between W/2 to W 

● Some apps would prefer sending at a steady rate  
● e.g., streaming apps 

● A solution: Equation-based Congestion Control  
● ditch TCP’s increase/decrease rules and just follow the equation 
● measure RTT and drop percentage p, and set rate accordingly

● Following the TCP equation ensures we’re “TCP friendly” 
● i.e., use no more than TCP does in similar setting

Throughput =
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(3) Loss not due to congestion?

● TCP will confuse corruption with congestion

● Flow will cut its rate

●
Throughput ~  even for non-congestion losses!

1
𝑝
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(4) How do short flows fare? 

● 50% of flows have < 1500B to send; 80% < 100KB

● Implication (1): many flows never leave slow start! 
● Short flows never attain their fair share 
● In fact, short flows are likely to suffer unduly long transfer times

● Implication (2): too few packets to trigger dupACKs  
● Isolated loss may lead to timeouts 
● At  typical timeout values of ~500ms, might severely impact  

flow completion time 

● A partial fix: use a higher initial CWND [RFC IW10]
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(5) TCP fills up queues  long 
delays

● A flow deliberately overshoots capacity, until it 
experiences a drop 

● Recall: loss follows delay (i.e,. queue must fill up) 

● Means that delays are large, for everyone 
● Consider a flow transferring a 10GB file sharing a   

bottleneck link with 10 flows transferring 100B 

● Problem exacerbated by the trend towards adding large 
amounts of memory on routers (a.k.a. “bufferbloat”)
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1 BBR: Congestion-Based Congestion Control; Cardwell et al, ACM Queue 2016 
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(5) TCP fills up queues  long 
delays

● Focus of Google’s BBR algorithm1 

● Basic idea (simplified): 
● Sender learns its minimum RTT (~ propagation RTT)
● Decreases its rate when the observed RTT exceeds the 

minimum RTT

1 BBR: Congestion-Based Congestion Control; Cardwell et al, ACM Queue 2016 

 

https://queue.acm.org/detail.cfm?id=3022184
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● Increasing CWND faster than +1 MSS per RTT



Increasing CWND Faster

Limit rates: 
x = 2y

C

x

y
x increases by 2 per RTT 
y increases by 1 per RTT



(6) Cheating



(6) Cheating

● Three easy ways to cheat 
● Increasing CWND faster than +1 MSS per RTT 
● Opening many connections



Open Many Connections

A B
x

D E
y

Assume  
• A starts 10 connections to B 
• D starts 1 connection to E 
• Each connection gets about the same throughput 

Then A gets 10 times more throughput than D
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(6) Cheating

● Three easy ways to cheat 
● Increasing CWND faster than +1 MSS per RTT 
● Opening many connections 
● Using large initial CWND
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Why hasn’t the Internet suffered 
another congestion collapse?

● Even “cheaters” do back off! 
● Leads to unfairness, not necessarily collapse 

● Hard to say whether unfair behavior is common
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Recap: TCP problems

● Misled by non-congestion losses
● Fills up queues leading to high delays
● Short flows complete before discovering available capacity
● Sawtooth discovery too choppy for some apps
● Unfair under heterogeneous RTTs
● Tight coupling with reliability mechanisms
● Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endhosts about 
congestion (fine- or coarse-

grained feedback) 

Routers enforce 
fair sharing



Router-Assisted Congestion Control

● Three ways routers can help  
● Enforce fairness  
● More precise rate adaptation 
● Detecting congestion



How can routers ensure each flow gets its 
“fair share”?
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Fairness: General Approach

● Consider a single router’s actions 

● Router classifies incoming packets into “flows” 
● (For now) let’s assume flows are TCP connections 

● Each flow has its own FIFO queue in router 

● Router picks a queue (i.e., flow) in a fair order; transmits 
packet from the front of the queue

● What does “fair” mean exactly?
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Max-Min Fairness

● Total available bandwidth C 

● Each flow i has bandwidth demand ri  

● What is a fair allocation ai  of bandwidth to each flow i ? 
 

● Max-min bandwidth allocations are:  

  ai  = min(f, ri) 

    where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s
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Example
● C = 10; N = 3; r1 = 8, r2 = 6, r3 = 2 

● C/N = 10/3 = 3.33 → 
● But r3’s need is only 2 
● Can service all of r3  
● Allocate 2 to r3 and remove it from accounting: C = C – r3 = 8; N = 2 

● C/2 = 4 → 
● Can’t service all of r1 or r2 
● So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:   
min(8, 4) = 4  
min(6, 4) = 4  
min(2, 4) = 2 

10
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Max-Min Fairness

● Property:
● If you don’t get full demand, no one gets more than you

● This is what round-robin service gives if all packets 
are the same size
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How do we deal with packets of 
different sizes?

● Mental model: Bit-by-bit round robin (“fluid flow”) 

● Cannot do this in practice!

● But we can approximate it  
● This is what “fair queuing” routers do
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FQ vs. FIFO
● FQ advantages:  

● Isolation: cheating flows don’t benefit 
● Bandwidth share does not depend on RTT 
● Flows can pick any rate adjustment scheme they want 

● Disadvantages: 
● More complex than FIFO: per flow queue/state, 

additional per-packet book-keeping 
● Still only a partial solution (coming up) 
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Fair Queuing In Practice

● “Pure” FQ too complex to implement at high speeds 

● But several approximations exist  
● E.g., Deficit Round Robin (DRR) 

● Today: 
● Routers typically implement approximate FQ (e.g., DRR)  
● For a small number of queues  
● Commonly used for coarser-grained isolation (e.g., for 

select customer prefixes) rather than per-flow isolation 
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● FQ does not eliminate congestion  it just 
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get 
 0.5Gbps; any excess  

will be dropped

Will drop an additional 
400Mbps from  
the green flow 

If the green flow doesn’t drop its sending 
rate to 100Mbps, we’re wasting 400Mbps 

that could be usefully given to the blue flow
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FQ in the big picture

● FQ does not eliminate congestion  it just manages 
the congestion 

● FQ’s benefit is its resilience (to cheating, variations in 
RTT, details of delay, reordering, etc.) 

● But congestion and packet drops still occur

● And we still want end-hosts to discover/adapt to their 
fair share!
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Per-flow fairness is a controversial goal

● What if you have 8 flows, and I have 4? 
● Why should you get twice the bandwidth 

● What if your flow goes over 4 congested hops, and mine 
only goes over 1? 
● Shouldn’t you be penalized for using more of scarce bandwidth? 

● And at what granularity do we really want fairness? 
● TCP connection? Source-Destination pair? Source? 

● Nonetheless, FQ/DRR is a great way to ensure isolation 
● Avoiding starvation even in the worst cases



Router-Assisted Congestion Control

● Three ways routers can help  
● Enforce fairness  
● More precise rate adaptation  
● Detecting congestion
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● Three ways routers can help  
● Enforce fairness  
● More precise rate adaptation  
● Detecting congestion
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Explicit Congestion Notification (ECN)

● Single bit in packet header; set by congested routers 
● If data packet has bit set, then ACK has ECN bit set

● Many options for when routers set the bit 
● Tradeoff between link utilization and packet delay

● Host can react as though it was a drop 

● Advantages: 
● Don’t confuse corruption with congestion 
● Early indicator of congestion  avoid delays 
● Lightweight to implement 

● Today:  
● Widely implemented in routers 
● Commonly used in datacenters (e.g., Azure)



Recap: Router-Assisted CC

● FQ: routers enforce per-flow fairness 

● RCP: routers inform endhosts of their fair share 

● ECN: routers set “I’m congested” bit in packets 
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Perspective: Router-Assisted CC

● Can be highly effective, approaching optimal perf.

● But deployment is more challenging 
● Need support at hosts and routers 
● Some require more complex book-keeping at routers 
● Some require deployment at every router 

● Though worth revisiting in datacenter contexts
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Perspective: TCP CC 

●  Not perfect, a little ad-hoc 

● But deeply practical/deployable 

● Good enough to have raised the bar for the 
deployment of new, more optimal, approaches  

● Though datacenters are       the CC agenda 
● different needs and constraints (future lecture)


