
Routing in Datacenters
Spring 2024

cs168.io

Rob Shakir

Thanks to Ankit Singla and Murphy McCauley for some of the material! 

http://cs168.io


Recall

● Datacenter networks are single-organisation networks that are typically in a 
single location.

● Utilise meshy topologies (e.g., folded Clos) to be able to maximise bisection 
bandwidth.



Datacenter Topologies

Recall: previously, we assumed that a routing protocol will pick a 
single path between some source a destination.



Datacenter Topologies

Picking only one path → not using all of the capacity available, and 
assuming coordinated selection of paths.



Equal Cost Multi-Path (ECMP)

● We, ideally, want to be able to use multiple paths between two sources.

● Why?



Equal Cost Multi-Path (ECMP)

● We, ideally, want to be able to use multiple paths between two hosts.

● Why? Bandwidth.

R1

R2

R3

R4A B

A → B bandwidth = link line rate
Red path unused.



Equal Cost Multi-Path (ECMP)

R1

R2

R3

R4A B

A → B bandwidth = link line rate
Red path unused.

R1

R2

R3

R4
A B

C D

A → B + C → D compete.
< line rate available for A → B

● We, ideally, want to be able to use multiple paths between two sources.

● Why? Bandwidth.



Equal Cost Multi-Path (ECMP)

● Recall: previously, we assumed that we pick a single path between some 
source a destination when routing.

● We need to be able to use multiple paths within the network topology where 
they are equal cost.

● Equal Cost Multi-Path.
○ Select all the paths that are the same cost.
○ Load-balance packets across these links.



Questions?



ECMP - Hashing

● How do we choose how to load balance packets across different forwarding 
paths?

● We need f(packet) → link.
○ f(packet) can run at each point that we need to load-balance traffic.



ECMP - Hashing

● What’s a good f?

● Just round-robin - send each packet to a different link.



ECMP - Hashing

● What’s a good f?

● Just round-robin - send each packet to a different link.

Ignores payload - does TCP care about 
re-ordering?



ECMP - Hashing

● What’s a good f?

IP Dst

f(dst_ip) → what happens if 
there are lots of sources to 

the same destination



ECMP - Hashing

● What’s a good f?

IP Src IP Dst

f(src_ip) → what happens if 
there is one source to lots of 

destinations?

f(dst_ip) → what happens if 
there are lots of sources to 

the same destination



ECMP - Hashing

● What’s a good f?

IP Src IP Dst

f(src_ip) → what happens if 
there is one source to lots of 

destinations?

f(dst_ip) → what happens if 
there are lots of sources to 

the same destination

f(src_ip, dst_ip) → gives 
sufficient entropy for 

hashing.



ECMP - Hashing

● What’s a good f?

IP Src IP Dst

f(src_ip) → what happens if 
there is one source to lots of 

destinations?

f(dst_ip) → what happens if 
there are lots of sources to 

the same destination

f(src_ip, dst_ip) → gives 
sufficient entropy for 

hashing.

What happens if there multiple 
elephant flows between the same 

<src,dst>?



ECMP - Hashing

● What’s a good f?

IP Src IP Dst TCP Src TCP Dst Payload

A TCP flow is from a source IP, to a 
specific destination IP, with specific 

source and destination port.

f(src_ip, dst_ip, src_port, dst_port)



ECMP - Hashing

● This series of fields is referred to as a 5-tuple.

● Gives sufficient entropy for load-balancing whilst not resulting in 
re-ordering.

● We refer to this as per-flow load-balancing.

IP Src IP Dst TCP Src TCP Dst Payload

f(src_ip, dst_ip, proto, src_port, dst_port)

Proto



Questions?



Recall: Clos Topologies

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

A

B



Routing in Clos Topologies

● How do we adjust our routing protocols to work in Clos topologies?



Routing in Clos Topologies - DV

R1 R3

R4R2

A

B

● Distance-Vector

Dst Cost NextHop

A 1 Direct

B 3 R4

R3 B,2



Routing in Clos Topologies - DV

R1 R3

R4R2

A

B

● Distance-Vector – R1 receives 
advertisement from R4 with cost 
of 2 to B (R4-R2, R2-B).

● Cost is the same as existing route 
B via R4.

● Route is not accepted!

Dst Cost NextHop

A 1 Direct

B 3 R4

R4 B,2



Routing in Clos Topologies - DV

R1

Dst Cost NextHop

A 1 Direct

B 3 R4

3 R3

R3

R4R2

A

B

● Must extend routing table to 
store multiple next-hops per 
destination.

● Update logic – if the cost is the 
same, then add as an additional 
route.

● Forwarding can then have entries 
to allow for ECMP.

R4 B,2



Routing in Clos Topologies - LS

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

A

B

● Link State

● Recall: each node stores the 
entire topology graph.

● Calculates shortest path to each 
destination through graph.



Routing in Clos Topologies - LS

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

A

B

● Must extend protocol to calculate 
all shortest paths between 
source and destination.

● Multiple paths now programmed 
into the forwarding table.



Questions?



Routing in Clos - Scaling.

● Distance-Vector:
○ Per-destination advertisements means 100,000+ destinations being advertised.

● Link-State:
○ Many link state advertisements with 10,000+ links.

● Memory, CPU and forwarding table resources are limited on commodity 
switches.



Topology-Aware Addressing and Routing

● Basic idea: the node (host) address tells us where in the topology it is.

● Exploits the idea that the topology is regular.



Topology-Aware Routing and Addressing

10.1.0.0/16 10.2.0.0/16 10.3.0.0/16 10.4.0.0/16



Topology-Aware Routing and Addressing

10.1.0.0/16 10.2.0.0/16 10.3.0.0/16 10.4.0.0/16

10.1.1.0/24 10.1.2.0/24 10.3.1.0/24 10.3.2.0/24



Topology-Aware Routing and Addressing

10.1.0.0/16 10.2.0.0/16 10.3.0.0/16 10.4.0.0/16

10.1.1.0/24 10.1.2.0/24 10.3.1.0/24 10.3.2.0/24

10.1.1.1/32

10.1.1.2/32

10.1.1.3/32

10.1.1.4/32



Topology-Aware Routing and Addressing

10.1.0.0/16 10.2.0.0/16 10.3.0.0/16 10.4.0.0/16

10.1.1.0/24 10.1.2.0/24 10.3.1.0/24 10.3.2.0/24

10.1.1.1/32

10.1.1.2/32

10.1.1.3/32

10.1.1.4/32

Dst Port

10.1.0.0/16 1

10.2.0.0/16 2

10.3.0.0/16 3

10.4.0.0/16 4



Topology-Aware Addressing and Routing

● Routing aggregation (summarisation) results in:
○ Fewer entries.
○ More stability.

● Updates are generally to address link or switch failures.
○ No need to advertise when a host goes away.

● Nice example of what can be achieved in a controlled network.
○ But… we can’t deal with “random” addressing turning up!



Questions?



A challenge to our datacenter routing approach…

● Traditional datacenters required servers to be installed or uninstalled to 
change routing requirements.
○ Machine was either there or it wasn’t!

● Virtualisation (virtual machines, containers) means that hosts can move 
often and quickly.

● Introduces new network control-plane scaling considerations.
○ More updates.
○ More calculations.



What is a virtual machine?

● A way of running a host inside another host.
● Allows for separation of environments whilst making efficient use of compute 

resources.
○ Allows for different administrators.
○ Allows for separation for security.

● Numerous hypervisors available.
○ e.g., VMWare, KVM.

Physical server (machine)

Hypervisor

VM1 VM2 VM3



Virtual Switches

● Virtual machines need network connectivity.

● This means our routers/switches might have multiple hosts connected per 
port.

● We need our machines to have some form of switch.
○ A virtual switch running in software.

Virtual 
Switch

VM1

VM2

VM3

Machine

E.g., Linux bridge interface 
or OpenVSwitch.

Performs same forwarding 
and control plane 

functions as a real switch



Questions?



What do virtual machines mean for our DC?

● More hosts!

● Hosts that exist independently of the number of ports on our “leaf” switches.

● We need some way to refer to, and reason about, networking with this new 
virtual layer.



Underlay

The Underlay Network

● The underlay network handles routing between physical machines.
○ We can exploit our addressing tricks to reduce scale.

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

Dst NextHop

2.0.0.0/8 R2

1.0.0.0/8 Direct

Dst NextHop

2.0.0.0/8 Direct

1.0.0.0/8 R3



Underlay

Impact of Virtual Machines

● We now have new hosts that turn up into our network rapidly!
● They may not be constrained to our “scalable” addressing scheme.

Server 1 Server 2

R1 R2 R3 R4

Dst NextHop

2.0.0.0/8 R2

1.0.0.0/8 Direct

Dst NextHop

2.0.0.0/8 Direct

1.0.0.0/8 R3

192.0.2.1

192.168.1.2

10.16.1.2



Scaling Concern

● Each virtual machine is one /32.
○ We can’t necessarily guarantee that we can aggregate.

● Aggregation was our scaling trick.

Underlay

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

Dst NextHop

2.0.0.0/8 R2

1.0.0.0/8 Direct

192.0.2.1/32 1.1.1.1

192.0.2.2/32 R2

Dst NextHop

2.0.0.0/8 Direct

1.0.0.0/8 R3

192.0.2.1/32 R3

192.0.2.2/32 2.2.2.2



Overlay and Underlay Networks

Underlay

Server 1 Server 2

R1 R2 R3 R4

OverlayVM 1 VM2

Concept: overlay network – a network topology that exists on top of the physical 
topology.



Underlay

How can we scale and support overlay networks?

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

Can we avoid the need to make the 
datacenter network scale to all the 

VM addresses?

Dst NextHop

2.2.2.2/32 R2

1.1.1.1/32 Direct

Dst NextHop

2.2.2.2/32 Direct

1.1.1.1/32 R3



Questions?



How can we scale and support overlay networks?

● VM1 → VM2 is a flow that is from 192.0.2.1 to 192.0.2.2.

● With destination based forwarding – we only look at the IP destination.

● Problem: The underlay network needs to understand every address in the 
overlay network.
○ Defining overlay networks didn’t help us scale!



How can we scale and support overlay networks?

● VM1 → VM2 is a flow that is from 192.0.2.1 to 192.0.2.2.

● With destination based forwarding – we only look at the IP destination.

● Problem: The underlay network needs to understand every address in the 
overlay network.
○ Defining overlay networks didn’t help us scale!

● Is there some way we can avoid needing to think about the VM address 
and rather just care about the physical machine?
○ We’d like to keep destination-based forwarding.



Encapsulation

● Thus far, we have just used one header per layer.
○ One L2 (Ethernet), one L3 (IP), one L4 (TCP).

● What happens if we add additional headers into the stack?

Ethernet

IP

IP

TCP

Data

We could add an additional 
IP header to the stack.

Ethernet

MPLS

IP

TCP

Data

Or a new kind of header 
outside of IP.



What does encapsulation allow us to do?

● Tell part of the network to forward based on one destination.

● At some later point in the network - remove the “outer” encapsulation, and 
let the network forward based on the “inner” encapsulation.

● This allows us to hide some complexity from the underlay network.



Encapsulation Actions

IP

TCP

Data

IP

TCP

Data

IP

Encapsulate packet - add 
another header to the original 

headers.

Decapsulate packet - remove a 
header to expose the header 

underneath.

IP

TCP

Data

IP

IP

TCP

Data



Underlay

Encapsulating Packets

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

Using an encapsulation allows us to hide the “inner” overlay 
packet from the underlay.

IP dst: 192.0.2.2



Underlay

Encapsulating Packets

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

Add: IP dst: 2.2.2.2 IP dst: 192.0.2.2

Using an encapsulation allows us to hide the “inner” overlay 
packet from the underlay.

IP dst: 192.0.2.2



Underlay

Encapsulating Packets

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

Add: IP dst: 2.2.2.2 IP dst: 192.0.2.2

Using an encapsulation allows us to hide the “inner” overlay 
packet from the underlay.

IP dst: 192.0.2.2 Del: IP dst: 2.2.2.2 IP dst: 192.0.2.2



Underlay

Encapsulating Packets

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

Add: IP dst: 2.2.2.2 IP dst: 192.0.2.2

Using an encapsulation allows us to hide the “inner” overlay 
packet from the underlay.

IP dst: 192.0.2.2 Del: IP dst: 2.2.2.2 IP dst: 192.0.2.2

IP dst: 192.0.2.2



Underlay

Scaling routing with encapsulation

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

IP dst: 192.0.2.2

Dst NextHop

0.0.0.0/0 Server 1

● Encapsulation allows us to separate routing in the underlay and overlay.
● Underlay:

○ Knows only about reachability to physical machines in the datacenter (same scaling as before).
● Overlay:

○ Knows about routing to each virtual machine that it needs to forward traffic to.



Underlay

Scaling routing with encapsulation

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

IP dst: 192.0.2.2

Dst NextHop

0.0.0.0/0 Server 1

Dst NextHop

192.0.2.2/32 Encap (dst: 2.2.2.2) 
&& R1

0.0.0.0/0 R1

● Encapsulation allows us to separate routing in the underlay and overlay.
● Underlay:

○ Knows only about reachability to physical machines in the datacenter (same scaling as before).
● Overlay:

○ Knows about routing to each virtual machine that it needs to forward traffic to.



Underlay

Scaling routing with encapsulation

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

VM 1 VM2

192.0.2.1 192.0.2.2

IP dst: 192.0.2.2

Dst NextHop

0.0.0.0/0 Server 1

Dst NextHop

192.0.2.2/32 Encap (dst: 2.2.2.2) 
&& R1

0.0.0.0/0 R1

Dst NextHop

2.0.0.0/8 R3

● Encapsulation allows us to separate routing in the underlay and overlay.
● Underlay:

○ Knows only about reachability to physical machines in the datacenter (same scaling as before).
● Overlay:

○ Knows about routing to each virtual machine that it needs to forward traffic to.



Questions?



Multi-tenancy

● Datacenter networks are single owner, but multi-tenant.

● This means that there can be different companies/departments running on 
the same infrastructure.
○ Again, allows for efficient use of resources.

● Large case: Cloud provider.
○ Many customers with their virtual machines running inside a single datacenter.
○ e.g., Azure, AWS, GCP.



Underlay

Multi-tenancy in a Datacenter

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

Coke 
VM 1

Coke 
VM 2

192.0.2.1 192.0.2.2

Our datacenter networks need to support multiple tenant 
networks - who don’t coordinate with each other.

Pepsi 
VM 1

192.0.2.1

Pepsi 
VM 2

192.0.2.2



Underlay

Multi-tenancy in a Datacenter

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

Coke 
VM 1

Coke 
VM 2

192.0.2.1 192.0.2.2

Our datacenter networks need to support multiple tenant 
networks - who don’t coordinate with each other.

Pepsi 
VM 1

192.0.2.1

Pepsi 
VM 2

192.0.2.2



Underlay

Multi-tenancy in a Datacenter

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

Coke 
VM 1

Coke 
VM 2

192.0.2.1 192.0.2.2

Pepsi 
VM 1

192.0.2.1

Pepsi 
VM 2

192.0.2.2

IP dst: 2.2.2.2 IP dst: 192.0.2.2

Our encapsulation just told us where to go - not who the packet 
was for.

?!



Underlay

Multi-tenancy in a Datacenter

Server 1 Server 2

R1 R2 R3 R4
1.1.1.1/32 2.2.2.2/32

Coke 
VM 1

Coke 
VM 2

192.0.2.1 192.0.2.2

Using encapsulations that allow specification of a virtual 
network ID allows multi-tenancy.

Pepsi 
VM 1

192.0.2.1

Pepsi 
VM 2

192.0.2.2

IP dst: 2.2.2.2 IP dst: 192.0.2.2Pepsi

IP dst: 2.2.2.2 IP dst: 192.0.2.2Coke



Encapsulations for Multi-Tenancy

● Carries information that isn’t directly forwarding information in the packet 
header.

● Allows for a packet to be resolved into a specific virtual network.

● Each virtual network is assigned a virtual network ID.



Putting it together - stacking encapsulations

IP

TCP

Data

IP

TCP

Data

Virtual Network 
Header

Add virtual 
network context

Add underlay 
destination

IP

TCP

Data

Virtual Network 
Header

Underlay network 
encapsulation

Encap



Putting it together - stacking encapsulations

IP

TCP

Data

IP

TCP

Data

Virtual Network 
Header

IP

TCP

Data

Virtual Network 
Header

Underlay network 
encapsulation

IP

TCP

Data

Virtual Network 
Header

Underlay network 
encapsulation

IP

TCP

Data

Virtual Network 
Header

IP

TCP

Data

Add virtual 
network context

Add underlay 
destination

Receive packet 
from underlay and 

decap.

Determine 
which topology 
and forward to 

VM

Decap



What headers do we use?

● Traditional encapsulation for multi-tenancy in telco networks has been 
MPLS.
○ A specific 20-bit label that identifies a service.
○ Historically not encapsulated in IP (but can be!)

● Many old and new(er) options as datacenters like this have grown.
○ Most work over IP (i.e., IP is the “outer” packet header that the underlay looks at).
○ e.g., GRE, VXLAN, GENEVE…

● Don’t worry about the details – mainly just understand that the idea of 
encapsulation exists.



Questions?



Summary

● Datacenter networks need different treatment in routing protocols.
○ Both Link State and Distance Vector.

● We can design addressing in our datacenters to improve scalability.

● As more dynamic, virtual servers arrived - routing could not scale!

● We use an overlay network to separate VM-to-VM networking from 
server-to-server.
○ This is achieved through encapsulating packets.

● Packet encapsulation also allows us to separate different tenants in a 
datacenter.


