
HTTP & CDNs
Spring 2024

cs168.io

Rob Shakir

Thanks to Iuniana Oprescu for some of the content!

http://cs168.io

Today

● Think about another application that runs on the Internet.

● What is Hypertext Transfer Protocol - HTTP?

● How do we make HTTP services perform well?

● What are Content Delivery Networks (CDNs)?

● Evolving HTTP.

HTTP

● Development initiated by Tim Berners-Lee at CERN in 1989.
○ Published a specification that was developed to eventually become the first version.

● Driven by a need to have information shared between scientists.
○ Developed the first website – recreated by CERN at https://info.cern.ch/.

● Needed a mechanism to transfer these “hypertext” pages between
computers.
○ And hence invented a protocol for it – HyperText Transfer Protocol

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://info.cern.ch/

HTTP is a TCP-based Request/Response Protocol

Client ServerTCP connection to example.com:80

● HTTP runs on a well-known TCP port, 80.
○ We will discuss secure HTTP later, which runs on tcp/443.

● TCP allows for reliable transport of the bytes that make up content.

HTTP is a TCP-based Request/Response Protocol

Client Server

● An HTTP client generates requests which ask for specific content from
the server.

● To start with we are going to think about HTTP/1.1.
○ Initial specification was HTTP/0.9 in 1991.
○ HTTP/1.0 was standardised in 1996.
○ HTTP/1.1 was standardised in 1997.

HTTP is a TCP-based Request/Response Protocol

Client Server

● HTTP client sends a request which the server responds to with a
response.

● Requests are a fixed format - ended by a carriage return and linefeed
(\r\n):

<method> <requested URL> <version>

HTTP is a TCP-based Request/Response Protocol

Client Server

● Initially, HTTP had only one method – GET.
○ Allowed a client to retrieve a specific URL (page) from the server.

● Clients can include Headers which allow additional information to be
propagated to the server.

GET / HTTP/1.1

HTTP is a TCP-based Request/Response Protocol

Client Server

● Following a client request, the server provides a HTTP response.

● Responses are in the format:

<version> <status code> <optional message>
<content>

HTTP/1.1 200 OK

HTTP Request Messages

● Simple text-based protocol that has been in the same form for >20 years.

● You can implement this protocol by connecting to a remote server on port
80 and just typing messages…

▶ telnet google.com 80
Trying 2607:f8b0:4005:802::200e...
Connected to google.com.
Escape character is '^]'.
GET / HTTP/1.1
User-Agent: robjs

HTTP Request Messages

● Simple text-based protocol that has been in the same form for >20 years.

● You can implement this protocol by connecting to a remote server on port
80 and just typing messages…

▶ telnet google.com 80
Trying 2607:f8b0:4005:802::200e...
Connected to google.com.
Escape character is '^]'.
GET / HTTP/1.1
User-Agent: robjs

Using the GET method
to get the “root” page -

/

Informing the server
we are using HTTP/1.1

Adding a well-known
header telling the

server the type of client
I am using…

HTTP Response Messages

● The server responds back using the same TCP connection with a response…

HTTP/1.1 200 OK
Date: Sat, 16 Mar 2024 18:33:08 GMT
Content-Type: text/html; charset=ISO-8859-1

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
lang="en"><head><meta content="Search the world's information,
including webpages, images, videos and more. Google has many special
features to help you find exactly what you're looking for."
name="description">....

HTTP Response Messages

● The server responds back using the same TCP connection with a response…

HTTP/1.1 200 OK
Date: Sat, 16 Mar 2024 18:33:08 GMT
Content-Type: text/html; charset=ISO-8859-1

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
lang="en"><head><meta content="Search the world's information,
including webpages, images, videos and more. Google has many special
features to help you find exactly what you're looking for."
name="description">....

HTTP response with
status code 200 -
description “OK”

Headers that tell the client
about the response - the
date and content-type to

allow responses to be
decoded.

The content we requested!

Questions?

Types of HTTP Methods

● GET is not the only method that we can use – although it is very common.

● HTTP was extended to add other methods.

● HEAD
○ receive the headers of the content that is being requested, but not the content itself.

● POST
○ supplying content from the client to the server at the specified URL.

● PUT, CONNECT, DELETE, OPTIONS, PATCH, TRACE.
○ Makes HTTP a mechanism for manipulating content – not just receiving it.
○ Client can make changes to content on the server, or retrieve it.

Format of HTTP Requests

GET /test.html HTTP/1.1
User-Agent: robjs

GET <URL> HTTP/1.1
<Headers>

● URL allows for the content location on the server to be specified.

● Headers allow for additional information about the client to be
propagated to the server.

Format of HTTP Requests

GET /test.html HTTP/1.1
User-Agent: robjs

GET <URL> HTTP/1.1
<Headers>

POST /test HTTP/1.1
User-Agent: robjs

field1=val1&field2=val2

POST <URL> HTTP/1.1
<Headers>

<Contents supplied by client>

● The URL lets the server know how to parse the information that is
received in the body of the request.

Format of HTTP Requests

GET /test.html HTTP/1.1
User-Agent: robjs

GET <URL> HTTP/1.1
<Headers>

POST /test HTTP/1.1
User-Agent: robjs

field1=val1&field2=val2

POST <URL> HTTP/1.1
<Headers>

<Contents supplied by client>

PUT /test.html HTTP/1.1
User-Agent: robjs

<p>Some File</p>

PUT <URL> HTTP/1.1
<Headers>

<Contents supplied by client>

Format of HTTP Responses

HTTP/1.1 200 OK
Content-Type: text/html

<html><head>...

HTTP/1.1 <Status Code> <Description>
<Headers>

<Contents>

HTTP/1.1 201 Created
Location: foo.html

HTTP/1.1 <Status Code> <Description>
<Headers>

HTTP/1.1 201 Created
Content-Location: test.html

HTTP/1.1 <Status Code> <Description>
<Headers>

HTTP Status Codes

● Status codes are used by the server to propagate information about the
result of the request to the client.

● Classified into various categories – according to numeric value:
○ 100 - Informational responses
○ 200 - Successful responses
○ 300 - Redirection messages
○ 400 - Client error responses
○ 500 - Server error responses

● Some are very recognisable – 404 (File Not Found), 503 (Service Unavailable)
○ You’ll probably run into these errors just through your browser.

google.com/doesnotexist

http://google.com/doesnotexist

Common Successful HTTP Status Codes

● 200 – OK
○ Request was successful.
○ Definition of success depends on the HTTP method that was being used.

● 201 - Created
○ Request succeeded and some new resource was created.
○ Seen generally in POST or PUT requests.

Common Redirection HTTP Status Codes

● Used when a server is telling a client that they should go and look for the
resource (specified by the URL) somewhere else.

● 301 – Moved Permanently
○ This resource has moved somewhere else!
○ Includes a header – Location: https://some.other.site/newpage.html

● 302 – Found
○ This resource has moved somewhere else, but temporarily.
○ Includes a header – Location: https://some.other.site/temppage.html

● Headers are required to give client additional context.
● Status code lets the client determine future behaviour.

○ e.g., temporarily redirected – client should come back to this URL to check in the future,
permanently redirected – client can always go to the new location.

https://some.other.site/newpage.html
https://some.other.site/temppage.html

Common Error HTTP Status Codes

● 401 - Unauthorized
○ Client is not allowed to access this content and must authenticate to do so.

● 403 - Forbidden
○ Client has authenticated, and the server knows its identity, but access is forbidden.

● 404 – File Not Found
○ Client is requesting a file that doesn’t exist.

● 500 - Internal Server Error
○ The server hit an error processing the request and can’t respond.

● 503 - Service Unavailable
○ The server cannot respond at the current time.

httpstatusdogs.com/203

http://httpstatusdogs.com/203

HTTP Error Codes

● There can be some ambiguity as to the status code to be used…

▶ telnet google.com 80
Trying 2607:f8b0:4005:80c::200e...
Connected to google.com.
Escape character is '^]'.
GET / HTTP/0.9

HTTP/1.0 400 Bad Request
Content-Type: text/html; charset=UTF-8
Referrer-Policy: no-referrer
Content-Length: 1555
Date: Sat, 16 Mar 2024 19:17:01 GMT

Status code could be 505 (HTTP
version not supported), but rather

400 (Bad Request) used.

Generally, category of error is the most
important (400 or 500 ⇒ error)

HTTP Headers

● In some types of messages, Headers are optional information.
○ e.g., User-Agent allows some metadata about the client browser or program to be

provided to the server.
○ Could result in different processing of the request.

● In other types, Headers are critical information.
○ e.g., Content-Type tells the client how to parse the body that is enclosed.
○ e.g., Host tells a server that has multiple different web sites hosted on it, which is being

addressed.

● However, in HTTP/1.1 no header is mandatory.

Classes of HTTP Headers - Request

● Request Headers
○ Pass information about the client to the server.

● Accept
○ Allows the client to determine what encoding of the response should be.
○ e.g., Accept: text/html
○ e.g., Accept: application/json
○ e.g., Accept: image/*

● Host
○ Allows the client to specify which host specifically they are aiming to access.
○ e.g., Host: google.com:80

● Referer [sic], User-Agent …

Classes of HTTP Header - Response

● Used in the response of the message - but does not relate to content.

● Content-Encoding - how the server encoded the content to be carried
over HTTP.
○ e.g., Content-Encoding: gzip says that the server compressed the contents.

● Date - when the server generated the response.

Classes of HTTP Header - Representation

● Used in HTTP requests and responses to describe how the content is
represented.

● Content-Type specifies the document type of the content.
○ e.g., Content-Type: text/html
○ e.g., Content-Type: image/png

● Representation headers allow us to carry different types of content over
HTTP!
○ We can now request an image as well as an HTML page over HTTP!

Questions?

HTTP for More than Just HTML Pages

● HTTP is flexible to carry many different types of content.

Static images

HTML page delivered
as text/html.

Images – delivered over HTTP with the
correct Content-Type.

Dynamic vs. Static Content

● Whilst dynamic pages might have their content change often, other
“resources” (specified by a URL) are static.

Static images
Static images – the same for every

request made to the page.

Dynamic content -
generated for each

different search
request.

Improving Web Performance

google.com

GET googlelogo.png HTTP/1.1

Improving Web Performance

google.com

GET googlelogo.png HTTP/1.1

GET googleicon.png HTTP/1.1

Improving Web Performance

google.com

TCP 3-way handshake…
GET googlelogo.png HTTP/1.1

TCP 3-way handshake…
GET googleicon.png HTTP/1.1

Improving Web Performance - Pipelining

google.com

GET googlelogo.png HTTP/1.1

GET googleicon.png HTTP/1.1

● Rather than requiring a new TCP connection per HTTP request, allow for
multiple requests to be “pipelined” over the same connection.

● Often need to load a lot of objects together!
○ e.g., youtube.com HTML page, and then each image for each video.
○ Server must maintain more open connections.

Improving Web Performance

google.com

GET googlelogo.png HTTP/1.1

GET googlelogo.png HTTP/1.1

● Rather than requiring a client to load the same content on every request
– can we have them cache the content if it won’t change?

● Need some way to carry metadata about the content that we returned ⇒
Headers!

HTTP – Headers indicating content validity

● The server can use response headers to indicate when content is valid until.

GET http://www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png HTTP/1.1

HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Type: image/png
Date: Sat, 16 Mar 2024 19:40:24 GMT
Expires: Sat, 16 Mar 2024 19:40:24 GMT
Cache-Control: private, max-age=31536000

?PNG
IHDR,?R???IDATx??

HTTP – Headers indicating content validity

● The server can use response headers to indicate when content is valid until.

GET http://www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png
HTTP/1.1

HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Type: image/png
Date: Sat, 16 Mar 2024 19:40:24 GMT
Expires: Sat, 16 Mar 2024 19:40:24 GMT
Cache-Control: private, max-age=31536000

?PNG
IHDR,?R???IDATx??

Legacy header used in HTTP/1.0,
obsoleted in HTTP/1.1

Cache-Control header allows the
server to inform the client how to cache

the resource.

Types of HTTP Cache

● There are different types of HTTP cache.

● Private – tied to a specific end client that is connecting to the server.
○ e.g., a browser’s cache.

● Proxy – not run by the application provider, but exists in the network to
reduce network bandwidth.

● Managed – run by the application provider, but is not the original server
that generated content.

Operation with No Caching

google.com

Origin server

● Every request results in a new request between a client and the origin
server.

Private Caches

google.com

Origin server

● Introducing private caches at each client means that cacheable content will
not be retrieved every request.

Proxy Caches

google.com

Origin server

● Introducing a proxy cache can reduce the bandwidth needed between a network
and the origin server.
○ Most useful where there is low bandwidth out of a particular network.
○ Requires clients to be redirected to the proxy cache.

In network
Proxy cache

Managed Caches

google.com

Origin server

● Managed caches allow the application provider to have more control.
○ Achieved by having some redirection mechanism (e.g., different DNS name – static.foo.com)

● Improves performance for clients by reducing latency.
○ Faster object retrieval for small content.
○ Higher throughput for large content.

google-
cache

google-
cache

Questions?

Cache-Control Header

● How do we control how long these caches hold on to some resource?

● Use a header that specifies the type of cache and what the required behaviours are
for such caches.
○ No contract though – really a request!

● Cache-Control: private,max-age=86400
○ private allows us to specify that this applies to a private (browser) cache.
○ max-age allows the owner of the content to specify how long to store the contents before

invalidating the cache.

● Cache-Control: no-store
○ Client/proxy is not allowed to cache the content.

● More complex policies possible.
○ E.g. “revalidate before using cache” (using HEAD etc.).

Loading a Complex HTTP Application

Dynamic HTML page
generated in

response to search
or user.

Video delivered over
HTTP - large amount

of data!

Images delivered
over HTTP – more
data than HTML of

web page.

Improving Application Performance

● Want to achieve the best TCP throughput we can for our application.
○ Especially important for the larger objects on the page – i.e., video and images.

○ TCP throughput ∝ 1/RTT

● Conveniently, the larger objects are static.
○ Image and video content does not change based on user.

● So, can we find a way to use proxies to be able to improve our load time?
○ Only go to the origin server for the dynamic content (HTML page), and have all the static

objects loaded from a proxy.

Using Caches for Content Delivery

● Private caches – implies the user accesses the same content multiple times.
○ Some performance improvements, but only on the second access.

● Proxy caches – must be installed by the network operator.
○ And need some changes to the client to know to access them.
○ May not obey the rules specified in the Cache-Control header.

● Managed caches
○ Can be controlled by the application provider.
○ Can be placed “close” to end users.
○ Redirects can be achieved by the application provider.

Content Delivery Networks (CDNs)

● Deployments of servers that can serve content (HTTP resources!)

● “Close” to end users.
○ Geographically.
○ From a network perspective.

● Allow for:
○ Higher-performance delivery of content (low-latency access to a close server)
○ Significant reductions in the bandwidth needed in the network.
○ Reduces the scaling needed for server infrastructure.
○ Allows for new modes of handling failures.

CDN Deployments.

DC NetworkWANPeeringPeeringWAN

Origin

ISP Network Application Provider

● Clients going to the origin:
○ Maximum latency ⇒ lowest performance.
○ Maximum amount of “backbone” network traversed ⇒ highest cost.
○ Scale must be supported on the origin server.

CDN Deployments.

DC NetworkWANPeeringPeeringWAN

Origin

ISP Network Application Provider

● CDN infrastructure can be deployed in the application provider.
○ Smaller sets of servers at the “edge” of the application provider’s networks.
○ Reduces the volume of backbone traffic for the application provider.
○ Reduces scale per deployment.

CDN

CDN

CDN Deployments.

DC NetworkWANPeeringPeeringWAN

Origin

ISP Network Application Provider

● Can push caching “deeper” into the network.
○ Deploy in the ISP’s network – improves performance and reduces cost.
○ ISP reduces their backbone network cost.

CDN

CDN

CDN Deployments.

DC NetworkWANPeeringPeeringWAN

Origin

ISP Network Application Provider

● Deployment depth is limited by efficiency.
○ Need multiple users to be accessing the same content.
○ Cost savings are only worth it if the cost of the additional server infrastructure is less than the

network capacity.

CDN

CDN

Large Global CDNs

● Specific CDN providers.
○ Akamai, Cloudflare, Edgio.

● Large application providers.
○ Netflix, Google, Amazon, Meta.

● Deployments either in their
own networks, or directly into
ISP networks.

https://peering.google.com/#/infrastructure

https://www.cloudflare.com/network/

CDNs in ISP Networks

● Often ISPs have their own content.
○ Video-on-Demand, or Live TV content as part of TV+Internet bundles.

● CDN server infrastructure is also deployed by these ISPs.

● Often a need for both third-party caches and ISP’s own infrastructure.
○ Sandvine report

■ Netflix - 15% of Internet traffic,
■ YouTube - 11.4% of traffic,
■ Disney+ - 4.5% of traffic.

● Deploying caches can mean reducing ~25% of network capacity!

https://www.sandvine.com/inthenews/netflix-is-responsible-for-15-of-global-internet-traffic-consumption#:~:text=No%201%3A%20Netflix%20%7C%20The%20OTT,percent%20of%20global%20internet%20traffic.

Questions?

Mapping Clients to Caches - recall.

Recall from our DNS lecture:

● Anycast – advertise the same IP prefix from multiple locations, allow
least-cost routing to choose the best location.

● DNS-based load-balancing – use the resolver/client’s address to be able to
choose what response to give.

Mapping Clients to Caches

● Anycast-based mapping – may have problems with long-lived connections.
○ Routing can change!

R1

R2

R3

C

1.0.0.0/24

1.0.0.0/24

Cost: 10

Mapping Clients to Caches

● Anycast-based mapping – may have problems with long-lived connections.
○ Routing can change!

R1

R2

R3

C

1.0.0.0/24

1.0.0.0/24

Cost: 10

Cost: 1

DNS-Based Mapping

● Allows stable mapping – but only at the granularity of client address.
○ May be at the resolver level.
○ EDNS extensions for client information may not be available

R1

R2

R3

C1

cache1.foo

cache2.foo

C2

Recursive
DNS

Auth
DNS

Application-Level Mapping

● Application can determine for a specific client where to map a user.
○ If the client is in Berkeley, give the DNS name of a cache in San Francisco.

● Application servers know the remote client’s address.

● Still need to understand the “closest” cache to a client.
○ And what the right strategy for failures is.

● Allows for mapping at per-content item granularity.
○ e.g., Cat videos are served at cache in Berkeley
○ e.g., Niche content is served from cache close to the origin.

Caching Server Deployments

● Highly optimised for content delivery and storage.

https://openconnect.netflix.com/en/appliances/

Commercial Model

● Mutually beneficial!
○ Content provider gets better application performance ✅
○ ISP gets lower bandwidth costs ✅

● Cooperative commercial model:
○ Content provider usually provides the servers for free.
○ ISP usually pays the fees for hosting them.

● In some cases, commercial negotiations required.
○ Cost of power/space might be more “deeper” into the network.

● Becomes more difficult as there are more caching providers.

Commercial Challenges - Fragmentation

● Cache deployment makes sense
if there are small numbers of
large content providers.

● Long-tail of content providers.
○ [Sandvine, 2023] Disney+ 4.5% of

traffic, Amazon Prime 2.8%.

● Idea: can we have shared caching
infrastructure?
○ CDN Interconnect (CDNI) - IETF
○ OpenCaching

● Challenging!
○ Who ensures quality?
○ How are resources shared?

B
an

dw
id

th

Time

B
an

dw
id

th
Time

https://datatracker.ietf.org/wg/cdni/about/
https://opencaching.svta.org/

Questions?

Beyond HTTP/1.1

● Lots of applications are over HTTP!

● Security of HTTP is a concern.
○ HTTPS introduces security – Transport Layer Security (TLS) handshakes for certificate

exchange.
○ Subsequent communications are encrypted.
○ Majority of traffic on the Internet is now HTTPS.

■ [W3Techs] 85.4% of sites are default HTTPS.

https://w3techs.com/technologies/details/ce-httpsdefault#:~:text=Our%20reports%20are%20updated%20daily,85.4%25%20of%20all%20the%20websites.

Beyond HTTP/1.1 - HTTP/2.0

● Introduced in 2015 (first new revision since 1997!).

● Aimed to improve performance:
○ Decrease latency and improve page load speed.

■ Data compression of headers.
■ Server-side pushing (server can send objects the client will need!)
■ Prioritisation of requests.
■ Better multiplexing of requests over an HTTP connection.

● Widely adopted across client software (browsers, RPC software) and CDNs.

Beyond HTTP/1.1 - HTTP/3.0

● Introduced in 2022.

● Semantics are the same as HTTP/2.0, but adopts a new underlying transport
– QUIC.

● QUIC:
○ Quick UDP Connections.
○ Designed at Google, standardised in IETF.

● Avoids some of the impact of TCP reliability mechanisms on HTTP
performance.

Recap

● HTTP is a protocol used to transfer data between a client and server –
originally designed for HTML web pages.

● HTTP consists of request and response messages with headers in them –
allowing for different types of content to be carried over it.

● Performance of HTTP can be improved through caching static content –
HTTP provides means to control how this caching is used.

● Content Delivery Networks (CDNs) provide infrastructure to allow for this
caching to be implemented to improve application performance.

