
Nandita Dukkipati
Lecture at UC Berkeley, April 2024

Host Networking (Part-I)

Lecture Topics

(This Lecture) Host Networking - Part I

What is Host Networking and Why it Matters.

The Role of Network Interface Cards (NICs).

Interfacing with Applications using Remote Direct
Memory Access (RDMA).

(Next Lecture) Host Networking - Part II
Techniques to reduce latency for applications

Congestion Control.

Load Balancing.

Shaping and Pacing traffic.

Quality-of-Service.

Reliable delivery of packets.

Lecture Outline

What is Host Networking
and Why it Matters

● Learnt before: network does packet delivery; TCP implements reliability, congestion control, flow control.

● Problem in Datacenters: extreme performance requirements; valuable CPU cores; kernel development is hard.

● Host Networking is heavily optimized for application performance and CPU efficiency.

● Optimization Opportunities: Operating System Bypass, and Offloads to the Network Interface Card.

The Role of Network
Interface Cards (NICs)

● What is the role of a NIC?

● What are Offloads and Why are they important?

● Offloads on a Spectrum:

○ Simple offloads like Checksum, Segmentation.

○ More complex offloads: Match Action Tables for Network Virtualization.

○ Most complex: offload the entire protocol, e.g. TCP, RDMA.

Remote Direct Memory
Access

● What is RDMA; Pros and Cons.

● Applications of RDMA.

● RDMA Building Blocks.

● A walk through of RDMA Send Operation.

End-to-End Performance of Applications

ToR ToR

Host Host Host Host

End-to-end application Performance in
datacenters hinges critically on Host
Networking.

Datacenter applications demand high
bandwidth and low latency.

Problem 1:
Traditional networking stacks struggle to
deliver high bandwidth and low latency
with low CPU overhead.

Problem 2:
Transport protocols designed for Internet
applications (e.g., TCP) are insufficient to
meet low latency requirements of
datacenter applications.

Network starts and ends at Hosts.

Network Protocols

Host
Networking

Stack

Network
Interface Card

What constitutes Host Networking?

Data
Sender Application

Data
Data

Host
Networking

Stack

Network
Interface Card

Data
Receiver Application

Data
Data

Pa
ck

et
 P

ro
ce

ss
in

g Packet Processing

Protocols running in Hosts: the abstraction

Transport protocols, such as TCP, offer the abstraction of a fast, reliable, secure ordered byte stream.

Implemented on an insecure, unordered, lossy datagram network with varying speed and reliability.

Sending
Host

Receiving
Host

Protocols running in Hosts: Implementing the
abstraction

● Congestion Control: how fast to send, to avoid overloading
the network?

● Loss Recovery: what to send: how to infer which packets
were lost, for retransmissions for reliability?

● Flow Control: how fast to send, to avoid overloading the
receiver's memory and/or CPU?

● Load Balancing: which path/paths should the traffic travel
to avoid congestion and black holes?

● Traffic Shaping/Pacing: when should each packet be sent,
to maintain short network queues?

● Quality of Service (QoS): what's the priority of this traffic
for allocating buffers and bandwidth at each hop, at <RTT
time scales?

● Bandwidth Allocation: how much bandwidth is this user
allowed on this path, on long time scales?

● Security: how to ensure traffic has a known src/dst user
(authentication) and content is correct (integrity /
checksums) and secret (encryption)?

Loss Recovery

Transport

NIC

Switch

Host

Scheduling

Flow Control

Congestion Control

Repathing

Bandwidth Allocation

Traffic Shaping/Pacing

Security

QoS

QoS

Green: covered before
Purple: next lecture
Orange: not covered in either lecture

Traditional Networking Stack in Operating System

Sender and Receiver-side Packet
Processing in the Operating System -
Linux, BSD.

Data

Application

Data

Data
Data

Data copy and
packet

processing

Operating SystemSockets

TCP

IPv4/v6

Network Driver

Sockets API

Network Interface Card

User Space
Kernel Space

Hardware
Data

Operating System bypass Stacks: Networking Stack in Userspace

Sender and Receiver-side Packet
Processing in User Space - e.g., Snap,
Data Plane Development Kit.

Application
Data

Network Interface Card
Hardware

Userspace Process

Packet Processing and Network
Protocols

Shared Memory Reads/Writes

Offloaded Networking Stack: Packet
Processing in NIC Hardware

Network Interface Card

Packet Processing and
Network Protocols

Application
Data

Sender and Receiver-side Packet
Processing in Hardware - e.g., Remote
Direct Memory Access (RDMA).

Hardware

Userspace

Lecture Outline

What is Host Networking
and Why it Matters

● Learnt before: network does packet delivery; TCP implements reliability, congestion control, flow control.

● Problem in Datacenters: extreme performance requirements; valuable CPU cores; kernel development is hard.

● Host Networking is heavily optimized for application performance and CPU efficiency.

● Optimization Opportunities: Operating System Bypass, and Offloads to the Network Interface Card.

The Role of Network
Interface Cards (NICs)

● What is the role of a NIC?

● What are Offloads and Why are they important?

● Offloads on a Spectrum:

○ Simple offloads like Checksum, Segmentation.

○ More complex offloads: Match Action Tables for Network Virtualization.

○ Most complex: offload the entire protocol, e.g. TCP, RDMA.

Remote Direct Memory
Access

● What is RDMA; Pros and Cons.

● Applications of RDMA.

● RDMA Building Blocks.

● A walk through of RDMA Send Operation.

Ref: Link to an IETF Talk

https://www.youtube.com/watch?v=wHM7RVk3-yk

Fundamentals of Network Interface Card (NIC)

● Host Networking Stack is the software stack
in the host that performs packet processing
across L2/L3/L4 layers.
○ Kernel networking stacks are

implemented in the Operating System.
○ OS-bypass stacks are implemented in

user-space.
● Network Interface Card is host’s interface to

the network.
● Offloads - perform processing in the NIC,

what one would normally do in host software
stack.

Application

Data

Sockets

TCP

IPv4/v6

Network Driver

Sockets API

Network Interface Card

User Space
Kernel Space

Hardware

Fundamentals of Network Interface Card (NIC)

Application

Data

Sockets

TCP/IP stack

Network Driver

Network Interface Card

User Space
Kernel Space

Hardware

Life of Packet in the NIC

NIC

Buffer

Packet Processing:
Checksum Calc.,

Segmentation, Transmit
Scheduling

Network Driver

PayloadTCPIP

Network Ports

Remove Ethernet Headers

Packet Processing:
Checksum Check,

Reassembly, Receive
Scheduling

Transceiver

NIC’s
Controller

PayloadTCPIPETH PayloadTCPIPETH

PayloadTCPIP

Buffer Construct Ethernet Frame
Transceiver

Generate Interrupt

Spectrum of Offloads to the NIC

● Epoch 1 - Basic Support
○ Transmit and Receive packets.
○ Simple Stateless Offloads.

● Epoch 2 - Accelerating the dataplane
○ Accelerating more complex parts of host networking stack.
○ Stateful offloads - Bandwidth Management, Forwarding etc.

● Epoch 3 - Protocol Offloads
○ General purpose processor with programmable data plane.
○ Protocol State Machine Offloads (protocols like TCP, RDMA).

● Free up host CPU cycles for applications
○ Network processing and applications no longer contend for CPU.

● Efficiency
○ Specialized processing in hardware can be more efficient.
○ Power savings.

● Performance
○ Scaling throughput.
○ Predictable low latency.

Why Offload?

Epoch 1: Simple, Stateless Offloads of Network Processing

● Checksum Offload (skip in lecture; material in slides)
○ Transmit and Receive Checksum Offloads.

● Segmentation Offloads
○ Transmit and Receive Segmentation Offloads.

● Multi Queue Support
○ Transmit Queue Selection, Receive Packet Steering.

Checksum Offload

● Checksums are small blocks of data derived from a larger chunk of data and are
used for error detection.
○ Sender calculates a checksum and includes it in the packet.
○ Receiver recalculates the checksum on their end. If the values match, the

data is likely intact.
● Checksum Offload is NIC calculation over data.

○ Ubiquitous in NICs for TCP, UDP, and other protocols.
● Examples for checksum calculations using one’s complement.

https://en.wikipedia.org/wiki/Internet_checksum#Calculating_the_IPv4_header_checksum

Transmit Checksum Offload

● NIC parses packets and sets TCP and UDP checksum.

● Networking stack instructs NIC where to start and write checksum.
○ Start offset for computing the checksum, and offset to write checksum

to.

IP Header Extension Headers TCP Data

Checksum Start Offset Checksum Field Offset

Checksum Coverage

Receive Checksum Offload

● NIC parses packets and verifies TCP and UDP checksum.

● NIC computes 1’s complement sum across words in the packet.

IP Header Extension Headers TCP Data

Device sums up words in Ethernet payload

Subtracting sum of preceding bytes yields sum of remaining bytes

Segmentation Offload

● Key metrics for Networking Stack/NICs: Bandwidth, Packet latency, Packet
Rate (small packets).

● Segmentation Offload: Host handles large packets, NIC handles MTU sized
ones.

● Host Networking stack in SW is more efficient when operating on large
packets.
○ Can maximize throughput while optimizing CPU usage.

Transmit Segmentation Offload

● Split big packets into MTU sized ones.

IP Ext.
Header TCP TCP Data

IP Ext.
Header TCP TCP Data

IP Ext.
Header TCP TCP Data

IP Ext.
Header TCP TCP Data

Receive Segmentation Offload

● Coalesce small packets into bigger ones.
● Difficult to make it work efficiently and make it work correctly with congestion

signals.

IP Ext.
Header TCP TCP Data

IP Ext.
Header TCP TCP Data

IP Ext.
Header TCP TCP Data

IP Ext.
Header TCP TCP Data

NIC with Single Queue

What happens with just one Transmit and one
Receive Queue in NIC?

Host Networking
Software

NIC
Hardware

Tx Q Rx Q

Multi-Queue NICs

Multiple Queues exposed by the NIC.
● Queues accessed for load balancing

network processing across CPU cores.
● Prioritized Scheduling of Queues.
● Dedicated for certain applications.

Host Networking
Software

NIC
Hardware

Tx Q Tx Q Tx Q Rx Q Rx Q Rx Q

Transmit Queue Selection

Transmit Packet Steering.
● Send packet on the queue

associated with specific CPU or
application.

Considerations
● Avoid out of order packets within a

TCP flow. Maintain a TCP flow to
queue affinity.

Host Networking
Software

NIC
Hardware

Tx Q Tx Q Tx QTx Q

Packet
Scheduler

Receive Side Scaling

Receive Side Scaling in NIC hardware
● NIC distributes packets across multiple

Receive queues; steer to queue based on
hash.

● Selected CPU to run interrupt handler on.

CPU 1

CPU 2

CPU 3

Rx-queue 1

Rx-queue 2

Rx-queue 3

Rx-queue 4

Epoch 2: Stateful offloads of Host Networking Stack

Offloads in support of Cloud Virtual Machines

● Bandwidth metering
● Many others functions also offloaded.

○ Virtual Routing Tables, Forwarding
○ Load balancers
○ Access Control Lists
○ Quality of Service

Why Offload?

● Free up host CPUs for customer Virtual Machines (VMs).
● Reduce overall cost of providing cloud services.
● Performance: higher throughput, lower latency and variability.

Match Action Tables

● Match packets based on headers
and metadata.

● Execute Actions based on Match.
○ Pass through, Drop.
○ Packet / metadata modification.
○ Connection Tracking.
○ Firewall actions.
○ Billing.

Match Action

Flow Table

src = 1.2.*.*, dest=*.*.*.*
src = 10.1.2.3, dest=*.*.*.*

Pass packet if burst < X
within 30 second
interval.

Epoch 3: Protocol Offloads

● Insatiable demand for bandwidth,
low latency along with high
efficiency.

● Protocol level offloads for low
latency in support of AI/ML and
High Performance Computing
workloads.

● TCP like protocols (reliability,
congestion control, ordering) are
offloaded to the NIC.

Network Interface Card

Packet Processing and
Network Protocols

Application
Data

Hardware

Userspace

Lecture Outline

What is Host Networking
and Why it Matters

● Learnt before: network does packet delivery; TCP implements reliability, congestion control, flow control.

● Problem in Datacenters: extreme performance requirements; valuable CPU cores; kernel development is hard.

● Host Networking is heavily optimized for application performance and CPU efficiency.

● Optimization Opportunities: Operating System Bypass, and Offloads to the Network Interface Card.

The Role of Network
Interface Cards (NICs)

● What is the role of a NIC?

● What are Offloads and Why are they important?

● Offloads on a Spectrum:

○ Simple offloads like Checksum, Segmentation.

○ More complex offloads: Match Action Tables for Network Virtualization.

○ Most complex: offload the entire protocol, e.g. TCP, RDMA.

Remote Direct Memory
Access

● What is RDMA; Pros and Cons.

● Applications of RDMA.

● RDMA Building Blocks.

● A walk through of RDMA Send Operation.

Topics we will cover

● Problems with Byte streaming transfers in traditional networking stacks.
● An overview of RDMA.
● RDMA Pros/Cons and Applications.
● Key Components for transferring data in RDMA.
● A walk through of an RDMA Send operation.

Traditional Networking Stack in Operating System

Data

Application

Data

Data
Data

Data copy
and packet
processing

Operating SystemSockets

TCP

IPv4/v6

Network Driver

Sockets API

Network Interface Card

User Space
Kernel Space

Hardware

Packet Processing in host networking
stack – Operating System (Linux, BSD)
or user-space stacks (Snap, Data Plane
Development Kit).

Problems:

● Latency variation in
microseconds.

● CPU inefficiencies (expensive,
CPU unavailable for applications).

● Limited packet rates or Op rates.

Remote Direct Memory Access (RDMA): Introduction

Application

Data

Data copy
and packet
processing

Operating SystemSockets

TCP

IPv4/v6

Network Driver

Network Interface Card

Hardware

Goal: An application at server A can access data
directly from the memory at server B without
consuming (much) CPU time at server A or B.

RDMA is a network abstraction/implementation that
achieves this goal.

● Replaces traditional TCP/IP
● Increasingly prevalent in datacenter.

Reminder: high level view of the internals of a server

CPU
cores

Host
memory

NIC

Sender

CPU
cores

Host
memory

NIC

Receiver

Data transfers without RDMA

CPU
cores

Host
memory

NIC

Sender

CPU
cores

Host
memory

NIC

Receiver

CPU is involved in moving data between memory and the NIC at both the
sender and receiver

Data transfers with RDMA

CPU
cores

Host
memory

NIC

Sender

CPU
cores

Host
memory

NIC

Receiver

CPU is (mostly) no longer involved!

Pros and Cons of RDMA

Pros
● High performance for data transfer between systems - low latency, high bandwidth.

● CPU efficiency: RDMA transfers data directly between senders/receivers without involving the CPU,
which frees up the system resources for applications.

Cons
● More complex than traditional networking: RDMA requires specialized hardware and software.

● Limited protocols:

○ RDMA is only compatible with certain transport protocols, which limits its general use in
datacenters.

○ RDMA is typically used for data transfer between systems that are in close proximity, limiting its
range of application.

Applications of RDMA

● High Performance Computing (HPC) Applications
○ Scientific research, financial modeling, weather forecasting.
○ Key driver: all the benefits of RDMA (low latency for small messages, high packet rate, CPU

efficiency)

● Low Latency applications.
○ ML inference, search queries, financial applications.
○ Key driver: low and predictable latency for small messages.

● Cloud Computing, e.g. migrating Virtual Machines from one physical server to another.
○ Key driver: CPU efficiency.

● Distributed Storage
○ key-value stores, Distributed File Systems.
○ Key driver: CPU efficiency.

● ML Training
○ Key driver: Predictable latency for high bandwidth transfers.
○ CPU efficiency is also a key consideration.

RDMA overview

● Basic idea: CPU sets up the transfer and then “gets out of the way”.

● Two high-level aspects to how this is achieved
a. A new application interface: RDMA “queue pairs”
b. Offloading common tasks (congestion control, reliability, ordering, etc.) to the RDMA

NIC and/or network fabric.

RDMA Queue Pairs

CPU
cores

Host
memory

NIC

RDMA Queue Pairs

CPU
cores

Host
memory

Se
nd

 W
or

k
Q

ue
ue

Re
ce

iv
e

W
or

k

Q
ue

ue

Queue Pair
(QP)

RDMA NIC

RDMA Queue Pairs

CPU
cores

Host
memory

Queue Pairs (QP) are the interface between the
application and RDMA NIC.

● Send Queue and Receive Queue are always
created in pairs. Used by the CPU to schedule
transfers.

● Different types of Queue Pairs:
○ Ordered vs. unordered.
○ Reliable vs. unreliable.

● Reliable Connected Queue Pairs

○ Closest to traditional TCP connections.

○ Connection establishment is out of band,
exchanges Queue Pair Ids, etc.

Se
nd

 W
or

k
Q

ue
ue

Re
ce

iv
e

W
or

k

Q
ue

ue

Queue Pair
(QP)

RDMA NIC

RDMA Queue Pairs

Se
nd

 W
or

k
Q

ue
ue

Re
ce

iv
e

W
or

k

Q
ue

ue

Queue Pair
(QP)

RDMA NIC

CPU
cores

Host
memory High-level idea behind Queue-Pair operation

Application instructs the NIC about data it wants to
send/receive by writing “Work Queue Elements”
(WQEs) to the Send/Receive Work Queue.

(RDMA Data Transfer Mechanisms) Send, Receive and Completion Queues

● Send Work Queue is responsible for managing
outgoing RDMA transfers initiated by the local
host.

● Receive Work Queue responsible for managing
incoming RDMA operations from a remote host.

● Queue Pair: Send + Receive Queues form a
complete Queue Pair (QP) for bidirectional
communication.

● Completion Queue (CQ) Stores completion
notifications for both Send and Receive Queue
transfers.

● The application reads the Completion Queue to
understand the status of its RDMA transfers.

Se
nd

 W
or

k
Q

ue
ue

Re
ce

iv
e

W
or

k

Q
ue

ue

RDMA NIC

CPU
cores

Host
memory

Co
m

pl
et

io
n

Q
ue

ue

(RDMA Data Transfer Mechanisms) Work Queue Elements

Se
nd

 W
or

k
Q

ue
ue

Re
ce

iv
e

W
or

k

Q
ue

ue

RDMA NIC

CPU
cores

Host
memory

Co
m

pl
et

io
n

Q
ue

ue

● Work Queue Elements (WQE): Instructions placed
by application in its Send/Receive Work Queue Pairs
telling NIC what buffers it wants to send or receive.

● A WQE primarily contains a pointer to a buffer.
○ WQE on send queue contains a pointer to the

transfer to be sent.
○ WQE on the receive queue contains a pointer

to a buffer where an incoming transfer from
the wire can be placed.

Receive WQE

Application

Send WQE includes
pointers to buffers with

data to be sent

Receive WQE includes pointers
to buffers where incoming data

will be placed

(RDMA Data Transfer Mechanisms) Work Queue Elements

Se
nd

 W
or

k
Q

ue
ue

Re
ce

iv
e

W
or

k

Q
ue

ue

RDMA NIC

CPU
cores

Host
memory

Co
m

pl
et

io
n

Q
ue

ue

● Application can queue a number of send or receive
WQEs at a time. The NIC will process these WQE in
order as fast as it can.

● When the WQE is processed the data is moved.
Once the transaction completes, a Completion
Queue Element (CQE) is created and placed on the
Completion Queue.

Receive WQE

Application

Send WQE includes
pointers to buffers with

data to be sent

Receive WQE includes pointers
to buffers where incoming data

will be placed

RDMA Operations

● Basic form of RDMA Operation: Send
○ Sends data to remote node.

● Other RDMA Operations:
○ RDMA Write.
○ RDMA Read.
○ RDMA Atomic.
○ RDMA WRITE with Immediate.

● Let’s step through the operation of an RDMA Send operation …

[Step 0] Application registers memory region accessible by NIC for RDMA transfers

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

Registered
Memory

Registered
Memory

Buffer
to transfer

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)
Buffer

to place
data

[Step 0] RDMA transfers “messages” from/to this registered memory region

[Step 1] Create Queue Pairs, Completion Queues

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

[Step 2] Application creates Work Queue Entries on Send and Receive Queues

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

Send WQE Receive WQE

[Step 2] Application creates Work Queue Entries on Send and Receive Queues

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

 Recall: WQEs contain pointers to the relevant buffers!

[Step 3] Memory to Memory Data Transfer (without CPU involvement!)

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

[Step 4] NICs Generate Completion Queue Entries (and remove relevant WQEs)

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

CQE CQE

[Step 5] Application Processes Completion Queue Entries

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

Se
nd

Q

ue
ue

Re
ce

iv
e

Q

ue
ue

Co
m

pl
et

io
n

Q
ue

ue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)

CQE
CQE

Wait, what about losses, reordering, congestion, etc.?

Two broad options:

1. Build a datacenter network that is reliable, preserves ordering, etc. [Nvidia’s
Infiniband]

2. Implement Reliability, Ordering, Congestion Control in NIC under queue-pair
abstraction [Google].

In both cases, applications and OS “see” the abstraction of reliable and in-order
message delivery.

