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Host Networking (Part-II)



Lecture Topics

(Last Lecture) Host Networking - Part I

Why Host Networking Matters.

The Role of Network Interface Cards (NICs).

Interfacing with Applications using Remote Direct 
Memory Access (RDMA).

(This Lecture) Host Networking - Part II
Techniques to reduce latency for applications

Congestion Control.

Load Balancing.

Shaping and Pacing traffic.

Quality-of-Service.

[If time permits] Reliable delivery of packets.



Recap: Protocols running in Hosts
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Protocols running in Hosts: the abstraction

Transport protocols, such as TCP, offer the abstraction of a fast, reliable, secure ordered byte stream.

Implemented on an insecure, unordered, lossy datagram network with varying speed and reliability.

Sending 
Host

Receiving 
Host



Protocols running in Hosts: Implementing the 
abstraction

● Congestion Control: how fast to send, to avoid overloading 
the network?

○ Delay-based congestion control.
● Loss Recovery: what to send: how to infer which packets 

were lost, for retransmissions for reliability? 
● Flow Control: how fast to send, to avoid overloading the 

receiver's memory and/or CPU?
● Load Balancing: which path/paths should the traffic travel 

to avoid congestion and black holes?
● Traffic Shaping/Pacing: when should each packet be sent, 

to maintain short network queues? 
● Quality of Service (QoS): what's the priority of this traffic 

for allocating buffers and bandwidth at each hop, at <RTT 
time scales?

● Bandwidth Allocation: how much bandwidth is this user 
allowed on this path, on long time scales? 

● Security: how to ensure traffic has a known src/dst user 
(authentication) and content is correct (integrity / 
checksums) and secret (encryption)?
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Congestion Control



Why use congestion control?

High congestion, resulting in queue build-up
=> high queue delay, high loss, slow transfers! 

Receiver

Capacity = 100 Gbps

Senders
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Sending rate = 80 Gbps 

Sending rate = 60 Gbps 

Goals of congestion control:
1. High throughput: By fully utilizing bottleneck bandwidth
2. Low latency, low loss: By keeping queues short
3. Approximate Fairness: By sharing resources equally among flows

Zero queue
=> low queue delay, low loss, fast transfers!
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Before: Without congestion control

After: With ideal congestion control
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How to avoid congestion: matching the bottleneck

For full throughput with low queuing delay and low loss, congestion control must match sending 
process to network path delivery process, in 2 dimensions:

Data rate: pace data at the rate the network path delivers and acknowledges data

Data volume: maintain the minimum amount of data in flight (in the network) required for full rate:
     the BDP = (Bandwidth*Delay Product) = Bottleneck_Bandwidth * Path_Round_Trip_Time

bottleneck link



Congestion Control Challenges in Datacenter

Congestion control 
requirements

Transfers must complete quickly, low 
latency.

Deliver high bandwidth (>> Gbps) 
and low latency (<< ms).

Efficient use of CPU.

Challenges

Bursty traffic because of 
applications and NIC 
offloading.

Small buffers.

Very small round-trip delays.

Incast traffic patterns with 
many (>1K) flows sharing 
very short paths.

Operating System-bypassed 
transports.

Opportunities

Hardware assistance.

Less worries of 
interoperability with 
legacy.

Explicit network feedback 
is easier to deploy.

Centralized control is 
possible.



Congestion control target operating points
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Estimating the target operating point: congestion signals

● Congestion control uses congestion signals to estimate whether a transport flow is sending too fast
● Congestion signals are diverse:

○ Different network environments offer different sets of signals
○ Signals offer differing levels of information/precision

● The commonly used congestion signals:

Signal How it is measured

Loss When a queue exhausts buffer space, host/switch drops packets

Bandwidth Sender measures the rate at which the receiver acknowledges packets

ECN Explicit Congestion Notification marked if queue > byte or time threshold

Delay Sender/receiver measure one-way or two-way delay to estimate queuing
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End-to-end delay decomposition of a Packet and its ACK

Delay Signals: End-to-end Delay Decomposition

5. Remote NIC Tx Delay

3. Remote NIC Rx Delay

Traffic Roundabout

2. Forward Fabric Delay

Lo
ca

l E
nd

po
in

t

Tx

Rem
ote Endpoint

Tx

Rx

Switch Queue

Switch Queue

6. Reverse Fabric Delay

1. Local NIC Tx Delay

7. Local NIC Rx Delay
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There are multiple possible congestion points in the end-to-end path of a flow; 
endpoint congestion behaves differently than network congestion.



Computing Round-Trip Time and One Way Delay

Local NIC Remote NIC

T1

T4

T3

T2

NIC-to-NIC RTT = (T4 - T1) - (T3 - T2)

Packet

Acknowledgment



Swift: A delay-based Congestion Control

Simple Additive Increase Multiplicative Decrease  based on a target-delay

if RTT < Target
increase cwnd

   (Additively)
else

decrease cwnd 
   (Multiplicatively)
   



Delay based CC keeps network RTT under control

Takeaways

NIC-to-NIC (network) RTT with Swift is significantly smaller than GCN especially at the tail.

The target-delay as a tuning-parameter works well as the achieved RTT is close to the 
configured target (note that the figure only displays the base target delay modulo scaling) 

Comparison point:
GCN == Explicit Notification Based 
CC
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Swift in the context of PonyExpress



Swift Implementation in NICs
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Load Balancing



ECMP: Load Imbalance and Congestion Hotspots

21

Data Center Networks have path diversity which Equal/Weighted Cost 
Multi-path (E/WCMP) routing uses to balance load on network links.

● E/WCMP hashes a flow’s src/dst ip/port (4-tuple) to determine the 
egress link.

● Dynamic bursts and flow sizes still cause links utilization imbalance.



ECMP: Load Imbalance and Congestion Hotspots
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PDF of  LI for ToR switches in a Google DCN where
● Load Imbalance (LI)=(max-min) utilization across switch uplinks 

over 30s
● ToRs have >70% average utilization across ports over +4 hours. 

Congested flows could use other uncongested links with spare bandwidth!

Better

ToR

 70   50   60
LI = 20



Every connection already tracks end-to-end congestion state.
Repath upon sustained congestion to find a congestion-free 
path.

How to repath from end-host? 

Switches can be configured to use Flow Label field from IPv6 header 
plus 4-tuple to determine the egress port. The connection changes 
the Flow Label of outgoing packets to send on a random path

Protective Load Balancing Intuition: Sense Congestion and Repath

23

Src host

Dst host

Step 1
Congestion!

Step 2
FL: 0x123 -> FL: 0x45
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PLB - Protective Load Balancing

Key Properties of PLB
● Nimbly move mice flows away from elephant-clogged bottlenecks 
● Waits for congestion control to react before it repaths

PLB algorithm 
1. Mark a round-trip as congested if congestion (measured via round-trip time) above 

threshold.
2. After several consecutive congested rounds

○ Wait until connection goes idle and then repath to minimize packet reordering.
○ If connection does not go idle, force repath after specified congested rounds.

3. Repeat (goto 1.)
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PLB Deployment in Google

Deployment Features 
● Simple changes (~50 LoCs) in each host networking stack (TCP BBRv2, Pony Express 

Swift[1,2]).
● Google DCs already fully use IPv6.
● Requires only switch config change and sender code change.

[1] Snap: a Microkernel Approach to Host Networking, SOSP 2019
[2] Swift: Delay is Simple and Effective for Congestion Control in the Datacenter, SIGCOMM 2020
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PLB reduces congestion hotspots across switches in datacenter

50% lower packet drops

LI=(max-min) utilization across switch 
uplinks over 30s

33% lower packet drops

LI across congested ToRs Max Utilization across aggregation layer switches

Better
Better
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Better load balancing across datacenter translates into application 
gains

Median deadline exceeded error rate drop 
by 66% for a low-latency filesystem

Better
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Summary

● Link load Imbalance exists at different levels of data center hierarchy
○ Top of Rack Switches, core switches, gateways to WAN

● PLB leverages existing DCN host and network features
○ Incremental PLB deployment receives immediate benefit

● Congestion is a powerful metric to align traffic to true carrying capacity
○ Traffic Engineering can create hotspots due to workload fluctuation or demand 

misprediction but can recover in O(sec) to O(min). PLB helps meanwhile.



Traffic Shaping and Pacing



Spreading traffic with shaping and pacing 
Shaping: spreading traffic over time to constrain bandwidth use by users, based on policy.

Problem: without shaping, bandwidth is allocated per transport connection, via congestion control

Solution: shaping allocates bandwidth per-user based on the business priority of each user

Pacing: spreading traffic over time, to reduce bursts, queues, queuing delay, packet loss (Swift, BBR CCs)

Problem: unpaced traffic creates NIC-line-rate bursts, increasing queuing delays and packet loss

Solution: pacing inserts delays between packets, reducing queuing delays and packet loss

Unpaced traffic can create large line-rate bursts:

Paced traffic has smaller burst and better mixing of flows: 

Line-rate bursts => queues at bottleneck:

Pacing vastly reduces queuing:

http://go/swift
http://go/bbr
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Packet Sources: Socket Buffers (TCP flows) in 
Host Operating System
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Confidential + Proprietary

Example: #Queues instantiated on a single machine



● CPU cost of maintaining queues grows super-linearly with #queues.
➔ Polling queues for packets to process.
➔ Complex algorithms for tracking active queues.
➔ High overhead data structures.
➔ Garbage collection.

● Synchronization cost on multi-CPU systems is dominated by locking and 
contention overhead when sharing queues amongst CPUs.

● Complexity of memory consumption and management grows with #queues.

Queues are high maintenance



Confidential + Proprietary

We do not need these queues and their associated cost.

Using Time as a basic construct to shape flows, we can 
get all of the benefits of the queues, at a low cost.



To NIC
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Single, O(1), Time-Indexed 
Queue, ordered by packet 
timestamps.
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Socket Buffers

Design Principles of Timing Wheel based Traffic Shaper
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● Single queue to handle tens of thousands of flows and wide ranging rates.
● O(1) Enqueue/Dequeue at line rate is key.
● Timing Wheel [Varghese et. al. SOSP ‘87].

○ Circular array of buckets.
○ Each bucket represents a time slot of fixed size.
○ Array represents time span from now to horizon.

Single Time-Indexed Queue

t t+1 t+2 ... t+h

Now
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● Single queue to handle tens of thousands of flows and wide ranging rates.
● O(1) Enqueue/Dequeue at line rate is key.
● Timing Wheel [Varghese et. al. SOSP ‘87].

○ Circular array of buckets.
○ Each bucket represents a time slot of fixed size.
○ Array represents time span from now to horizon.

Single Time-Indexed Queue

t t+1 t+2 .. t+h

Now

t t+1 t+2 ...t+h



Confidential + Proprietary

Number of 
Packets in 

Timing Wheel
1000 4000 32000 256000

Overhead per 
Packet (ns) 22 21 21 21

O(1) Enqueue / Dequeue regardless of #packets



To NIC

Shaper

Determine Departure Time 
based on Pacing/Shaping 
Rate.
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Design Principles of Timing Wheel based Traffic Shaper
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Timestamper Timestamper

TimestamperAggregate rate

Timing Wheel

Pacing rate

Socket 
Buffers in 
Host OS Compute Earliest Departure Time based on 

policy. 

Example:
● TCP timestamps a packet based on its 

pacing rate.
● Bandwidth Enforcer timestamps a 

packet based on flow aggregate rate.

Consolidate Timestamps by choosing the 
largest one (== smallest rate).

NextTS = LastTS + 
SizeOfPacket

ConfiguredRate

Timestampers



To NIC

Shaper

Flow Control

Ti
m

es
ta

m
pe

r



Confidential + Proprietary

To NIC

Shaper

One Shaper per Core
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Timing Wheel: efficient pacing/shaping of transmissions

      

Dequeue packet 
and send it out

Enqueue 
packet in 

Timing Wheel

Compute Earliest 
Departure Time based on 

pacing/shaping rate

Wire
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Timing Wheel: a single, O(1), time-indexed 
queue, ordered by packet Earliest Departure 
Timestamp

Schedule departure based on prev 
departure time, packet size, rate

Packets in Socket 
Buffers

https://dl.acm.org/doi/10.1145/3098822.3098852


Quality-of-Service



QoS (Quality of Service): allocating resources at links
Problem: When there is congestion  at a link, how should the host/switch/router allocate resources 
(buffer space, bandwidth)?



QoS (Quality of Service): allocating resources at links
Problem: When there is congestion  at a link, how should the host/switch/router allocate resources 
(buffer space, bandwidth)?

Solution: Sender application => priority class => QoS in packet => queue => 1: buffer, 2: bandwidth 



QoS (Quality of Service): allocating resources at links
Problem: When there is congestion  at a link, how should the host/switch/router allocate resources 
(buffer space, bandwidth)?

Solution: Sender application => priority class => QoS in packet => queue => 1: buffer, 2: bandwidth 

E.g., Storage, MapReduce, 
distributed in-memory file 
system, web search indexing, 
query serving, and caching 
services. 

E.g., Latency-sensitive, 
throughput-intensive, 
best effort.

Encoded in 
IP header
(DSCP)

E.g., low, mid, high.



bandwidth

QoS (Quality of Service): allocating resources at links

ReceiverSenders

mid

lo

Switch

Packets in time slots in Egress Link
hi

1: buffer allocation 2: bandwidth allocation

Egress Link

weight
4

2

1

QoS => q's max share of buffer QoS => q's weight => bandwidthQoS 

Problem: When there is congestion  at a link, how should the host/switch/router allocate resources 
(buffer space, bandwidth)?

Solution: Sender app priority => service class => QoS in packet => queue => 1: buffer, 2: bandwidth 

Switch allocates buffer slots to
packets in per-QoS queues

Scheduler allocates bandwidth
(weighted fair queuing)



Where does QoS Matter?

Sender: 
Prioritization 
in host 
networking 
stack and 
NICs

Receiver:
Prioritization 
in host 
networking 
stack and 
NICs

Packet buffering & scheduling in 
switches



QoS prioritization in the network

● QoS only matters when a switch port is 100% utilized when packets arrive.

○ Under <100% utilization, every packet is sent at line-rate hence QoS does not matter

● QoS prioritization policy under congestion.

○ Send higher priority packets (than the lower ones) at small timescales (<ms)

○ On buffer overrun, drop lower priority packets first (if available)

● Need to provision buffers carefully.


