
Nandita Dukkipati
Lecture at UC Berkeley, April 2024

Host Networking (Part-II)

Lecture Topics

(Last Lecture) Host Networking - Part I

Why Host Networking Matters.

The Role of Network Interface Cards (NICs).

Interfacing with Applications using Remote Direct
Memory Access (RDMA).

(This Lecture) Host Networking - Part II
Techniques to reduce latency for applications

Congestion Control.

Load Balancing.

Shaping and Pacing traffic.

Quality-of-Service.

[If time permits] Reliable delivery of packets.

Recap: Protocols running in Hosts

Network Protocols

Host
Networking

Stack

Network
Interface Card

What constitutes Host Networking?

Data
Sender Application

Data
Data

Host
Networking

Stack

Network
Interface Card

Data
Receiver Application

Data
Data

Pa
ck

et
 P

ro
ce

ss
in

g Packet Processing

Protocols running in Hosts: the abstraction

Transport protocols, such as TCP, offer the abstraction of a fast, reliable, secure ordered byte stream.

Implemented on an insecure, unordered, lossy datagram network with varying speed and reliability.

Sending
Host

Receiving
Host

Protocols running in Hosts: Implementing the
abstraction

● Congestion Control: how fast to send, to avoid overloading
the network?

○ Delay-based congestion control.
● Loss Recovery: what to send: how to infer which packets

were lost, for retransmissions for reliability?
● Flow Control: how fast to send, to avoid overloading the

receiver's memory and/or CPU?
● Load Balancing: which path/paths should the traffic travel

to avoid congestion and black holes?
● Traffic Shaping/Pacing: when should each packet be sent,

to maintain short network queues?
● Quality of Service (QoS): what's the priority of this traffic

for allocating buffers and bandwidth at each hop, at <RTT
time scales?

● Bandwidth Allocation: how much bandwidth is this user
allowed on this path, on long time scales?

● Security: how to ensure traffic has a known src/dst user
(authentication) and content is correct (integrity /
checksums) and secret (encryption)?

Loss Recovery

Transport

NIC

Switch

Host

Scheduling

Flow Control

Congestion Control

Repathing

Bandwidth Allocation

Traffic Shaping/Pacing

Security

QoS

QoS

Green: covered before
Purple: new topics
Orange: not covered

Congestion Control

Why use congestion control?

High congestion, resulting in queue build-up
=> high queue delay, high loss, slow transfers!

Receiver

Capacity = 100 Gbps

Senders

S1

S2

Sending rate = 80 Gbps

Sending rate = 60 Gbps

Goals of congestion control:
1. High throughput: By fully utilizing bottleneck bandwidth
2. Low latency, low loss: By keeping queues short
3. Approximate Fairness: By sharing resources equally among flows

Zero queue
=> low queue delay, low loss, fast transfers!

Receiver

Capacity = 100 Gbps

Senders

S1

S2

Sending Rate = 50 Gbps

Sending Rate = 50 Gbps

Before: Without congestion control

After: With ideal congestion control

Switch

Switch

How to avoid congestion: matching the bottleneck

For full throughput with low queuing delay and low loss, congestion control must match sending
process to network path delivery process, in 2 dimensions:

Data rate: pace data at the rate the network path delivers and acknowledges data

Data volume: maintain the minimum amount of data in flight (in the network) required for full rate:
 the BDP = (Bandwidth*Delay Product) = Bottleneck_Bandwidth * Path_Round_Trip_Time

bottleneck link

Congestion Control Challenges in Datacenter

Congestion control
requirements

Transfers must complete quickly, low
latency.

Deliver high bandwidth (>> Gbps)
and low latency (<< ms).

Efficient use of CPU.

Challenges

Bursty traffic because of
applications and NIC
offloading.

Small buffers.

Very small round-trip delays.

Incast traffic patterns with
many (>1K) flows sharing
very short paths.

Operating System-bypassed
transports.

Opportunities

Hardware assistance.

Less worries of
interoperability with
legacy.

Explicit network feedback
is easier to deploy.

Centralized control is
possible.

Congestion control target operating points

amount of data in flight

de
liv

er
y

ra
te

BDP BDP + Buffer Size

RT
T

Traditional loss-based CC (e.g. Reno/CUBIC)

State-of-the-art CCs (Swift/BBR)

packet loss

Estimating the target operating point: congestion signals

● Congestion control uses congestion signals to estimate whether a transport flow is sending too fast
● Congestion signals are diverse:

○ Different network environments offer different sets of signals
○ Signals offer differing levels of information/precision

● The commonly used congestion signals:

Signal How it is measured

Loss When a queue exhausts buffer space, host/switch drops packets

Bandwidth Sender measures the rate at which the receiver acknowledges packets

ECN Explicit Congestion Notification marked if queue > byte or time threshold

Delay Sender/receiver measure one-way or two-way delay to estimate queuing

 m
or

e
in

fo
rm

at
io

n/
pr

ec
is

io
n

End-to-end delay decomposition of a Packet and its ACK

Delay Signals: End-to-end Delay Decomposition

5. Remote NIC Tx Delay

3. Remote NIC Rx Delay

Traffic Roundabout

2. Forward Fabric Delay

Lo
ca

l E
nd

po
in

t

Tx

Rem
ote Endpoint

Tx

Rx

Switch Queue

Switch Queue

6. Reverse Fabric Delay

1. Local NIC Tx Delay

7. Local NIC Rx Delay

Rx

4. Rem
ote Processing Delay

There are multiple possible congestion points in the end-to-end path of a flow;
endpoint congestion behaves differently than network congestion.

Computing Round-Trip Time and One Way Delay

Local NIC Remote NIC

T1

T4

T3

T2

NIC-to-NIC RTT = (T4 - T1) - (T3 - T2)

Packet

Acknowledgment

Swift: A delay-based Congestion Control

Simple Additive Increase Multiplicative Decrease based on a target-delay

if RTT < Target
increase cwnd

 (Additively)
else

decrease cwnd
 (Multiplicatively)

Delay based CC keeps network RTT under control

Takeaways

NIC-to-NIC (network) RTT with Swift is significantly smaller than GCN especially at the tail.

The target-delay as a tuning-parameter works well as the achieved RTT is close to the
configured target (note that the figure only displays the base target delay modulo scaling)

Comparison point:
GCN == Explicit Notification Based
CC

Loss/RTT/ECN
Measurement

Engine

ACKs

CWND and Rate
Computation

Engine

CWND and
Rate

Enforcement

Paced
Packets

Increase / Decrease based on
congestion detection signals

CWND /
Rate

Time

Data
Congestion Control Framework implementing Swift

Swift in the context of PonyExpress

Swift Implementation in NICs

Event
Queue

NIC Hardware
network

Connection id
Type: ACK/SACK/Rexmit
HW Timestamps
Number of packets acked

Event

Response Response

Event

Swift Implementation
in Programmable

Congestion Control

Connection id
Congestion Window
Inter-packet gap
Retransmit timeout
Randomize path

Response
Queue

CPU cores on
NIC

Load Balancing

ECMP: Load Imbalance and Congestion Hotspots

21

Data Center Networks have path diversity which Equal/Weighted Cost
Multi-path (E/WCMP) routing uses to balance load on network links.

● E/WCMP hashes a flow’s src/dst ip/port (4-tuple) to determine the
egress link.

● Dynamic bursts and flow sizes still cause links utilization imbalance.

ECMP: Load Imbalance and Congestion Hotspots

22

PDF of LI for ToR switches in a Google DCN where
● Load Imbalance (LI)=(max-min) utilization across switch uplinks

over 30s
● ToRs have >70% average utilization across ports over +4 hours.

Congested flows could use other uncongested links with spare bandwidth!

Better

ToR

 70 50 60
LI = 20

Every connection already tracks end-to-end congestion state.
Repath upon sustained congestion to find a congestion-free
path.

How to repath from end-host?

Switches can be configured to use Flow Label field from IPv6 header
plus 4-tuple to determine the egress port. The connection changes
the Flow Label of outgoing packets to send on a random path

Protective Load Balancing Intuition: Sense Congestion and Repath

23

Src host

Dst host

Step 1
Congestion!

Step 2
FL: 0x123 -> FL: 0x45

24

PLB - Protective Load Balancing

Key Properties of PLB
● Nimbly move mice flows away from elephant-clogged bottlenecks
● Waits for congestion control to react before it repaths

PLB algorithm
1. Mark a round-trip as congested if congestion (measured via round-trip time) above

threshold.
2. After several consecutive congested rounds

○ Wait until connection goes idle and then repath to minimize packet reordering.
○ If connection does not go idle, force repath after specified congested rounds.

3. Repeat (goto 1.)

25

PLB Deployment in Google

Deployment Features
● Simple changes (~50 LoCs) in each host networking stack (TCP BBRv2, Pony Express

Swift[1,2]).
● Google DCs already fully use IPv6.
● Requires only switch config change and sender code change.

[1] Snap: a Microkernel Approach to Host Networking, SOSP 2019
[2] Swift: Delay is Simple and Effective for Congestion Control in the Datacenter, SIGCOMM 2020

26

PLB reduces congestion hotspots across switches in datacenter

50% lower packet drops

LI=(max-min) utilization across switch
uplinks over 30s

33% lower packet drops

LI across congested ToRs Max Utilization across aggregation layer switches

Better
Better

27

Better load balancing across datacenter translates into application
gains

Median deadline exceeded error rate drop
by 66% for a low-latency filesystem

Better

28

Summary

● Link load Imbalance exists at different levels of data center hierarchy
○ Top of Rack Switches, core switches, gateways to WAN

● PLB leverages existing DCN host and network features
○ Incremental PLB deployment receives immediate benefit

● Congestion is a powerful metric to align traffic to true carrying capacity
○ Traffic Engineering can create hotspots due to workload fluctuation or demand

misprediction but can recover in O(sec) to O(min). PLB helps meanwhile.

Traffic Shaping and Pacing

Spreading traffic with shaping and pacing
Shaping: spreading traffic over time to constrain bandwidth use by users, based on policy.

Problem: without shaping, bandwidth is allocated per transport connection, via congestion control

Solution: shaping allocates bandwidth per-user based on the business priority of each user

Pacing: spreading traffic over time, to reduce bursts, queues, queuing delay, packet loss (Swift, BBR CCs)

Problem: unpaced traffic creates NIC-line-rate bursts, increasing queuing delays and packet loss

Solution: pacing inserts delays between packets, reducing queuing delays and packet loss

Unpaced traffic can create large line-rate bursts:

Paced traffic has smaller burst and better mixing of flows:

Line-rate bursts => queues at bottleneck:

Pacing vastly reduces queuing:

http://go/swift
http://go/bbr

Application

Data

Sockets

TCP/IP

Network Driver

Network Interface Card

User Space
Kernel Space

Hardware

Queuing Discipline

Packet Sources: Socket Buffers (TCP flows) in
Host Operating System

Sc
he

du
le

r

To NICRate1

Rate2

Rate3

Shaper

C
la

ss
ifi

er

Traffic Shapers in Practice

Confidential + Proprietary

Example: #Queues instantiated on a single machine

● CPU cost of maintaining queues grows super-linearly with #queues.
➔ Polling queues for packets to process.
➔ Complex algorithms for tracking active queues.
➔ High overhead data structures.
➔ Garbage collection.

● Synchronization cost on multi-CPU systems is dominated by locking and
contention overhead when sharing queues amongst CPUs.

● Complexity of memory consumption and management grows with #queues.

Queues are high maintenance

Confidential + Proprietary

We do not need these queues and their associated cost.

Using Time as a basic construct to shape flows, we can
get all of the benefits of the queues, at a low cost.

To NIC

Shaper

Single, O(1), Time-Indexed
Queue, ordered by packet
timestamps.

Ti
m

es
ta

m
pe

r

Socket Buffers

Design Principles of Timing Wheel based Traffic Shaper

Confidential + Proprietary

● Single queue to handle tens of thousands of flows and wide ranging rates.
● O(1) Enqueue/Dequeue at line rate is key.
● Timing Wheel [Varghese et. al. SOSP ‘87].

○ Circular array of buckets.
○ Each bucket represents a time slot of fixed size.
○ Array represents time span from now to horizon.

Single Time-Indexed Queue

t t+1 t+2 ... t+h

Now

Confidential + Proprietary

● Single queue to handle tens of thousands of flows and wide ranging rates.
● O(1) Enqueue/Dequeue at line rate is key.
● Timing Wheel [Varghese et. al. SOSP ‘87].

○ Circular array of buckets.
○ Each bucket represents a time slot of fixed size.
○ Array represents time span from now to horizon.

Single Time-Indexed Queue

t t+1 t+2 .. t+h

Now

t t+1 t+2 ...t+h

Confidential + Proprietary

Number of
Packets in

Timing Wheel
1000 4000 32000 256000

Overhead per
Packet (ns) 22 21 21 21

O(1) Enqueue / Dequeue regardless of #packets

To NIC

Shaper

Determine Departure Time
based on Pacing/Shaping
Rate.

Ti
m

es
ta

m
pe

r

Socket Buffers

Design Principles of Timing Wheel based Traffic Shaper

Confidential + ProprietaryConfidential + Proprietary

Timestamper Timestamper

TimestamperAggregate rate

Timing Wheel

Pacing rate

Socket
Buffers in
Host OS Compute Earliest Departure Time based on

policy.

Example:
● TCP timestamps a packet based on its

pacing rate.
● Bandwidth Enforcer timestamps a

packet based on flow aggregate rate.

Consolidate Timestamps by choosing the
largest one (== smallest rate).

NextTS = LastTS +
SizeOfPacket

ConfiguredRate

Timestampers

To NIC

Shaper

Flow Control

Ti
m

es
ta

m
pe

r

Confidential + Proprietary

To NIC

Shaper

One Shaper per Core

Ti
m

es
ta

m
pe

r

Timing Wheel: efficient pacing/shaping of transmissions

Dequeue packet
and send it out

Enqueue
packet in

Timing Wheel

Compute Earliest
Departure Time based on

pacing/shaping rate

Wire

Ti
m

es
ta

m
pe

r

Timing Wheel: a single, O(1), time-indexed
queue, ordered by packet Earliest Departure
Timestamp

Schedule departure based on prev
departure time, packet size, rate

Packets in Socket
Buffers

https://dl.acm.org/doi/10.1145/3098822.3098852

Quality-of-Service

QoS (Quality of Service): allocating resources at links
Problem: When there is congestion at a link, how should the host/switch/router allocate resources
(buffer space, bandwidth)?

QoS (Quality of Service): allocating resources at links
Problem: When there is congestion at a link, how should the host/switch/router allocate resources
(buffer space, bandwidth)?

Solution: Sender application => priority class => QoS in packet => queue => 1: buffer, 2: bandwidth

QoS (Quality of Service): allocating resources at links
Problem: When there is congestion at a link, how should the host/switch/router allocate resources
(buffer space, bandwidth)?

Solution: Sender application => priority class => QoS in packet => queue => 1: buffer, 2: bandwidth

E.g., Storage, MapReduce,
distributed in-memory file
system, web search indexing,
query serving, and caching
services.

E.g., Latency-sensitive,
throughput-intensive,
best effort.

Encoded in
IP header
(DSCP)

E.g., low, mid, high.

bandwidth

QoS (Quality of Service): allocating resources at links

ReceiverSenders

mid

lo

Switch

Packets in time slots in Egress Link
hi

1: buffer allocation 2: bandwidth allocation

Egress Link

weight
4

2

1

QoS => q's max share of buffer QoS => q's weight => bandwidthQoS

Problem: When there is congestion at a link, how should the host/switch/router allocate resources
(buffer space, bandwidth)?

Solution: Sender app priority => service class => QoS in packet => queue => 1: buffer, 2: bandwidth

Switch allocates buffer slots to
packets in per-QoS queues

Scheduler allocates bandwidth
(weighted fair queuing)

Where does QoS Matter?

Sender:
Prioritization
in host
networking
stack and
NICs

Receiver:
Prioritization
in host
networking
stack and
NICs

Packet buffering & scheduling in
switches

QoS prioritization in the network

● QoS only matters when a switch port is 100% utilized when packets arrive.

○ Under <100% utilization, every packet is sent at line-rate hence QoS does not matter

● QoS prioritization policy under congestion.

○ Send higher priority packets (than the lower ones) at small timescales (<ms)

○ On buffer overrun, drop lower priority packets first (if available)

● Need to provision buffers carefully.

