
Routing #2
Spring 2024

cs168.io

Rob Shakir

http://cs168.io
http://cs168.io

Last Time

● Talked about what a router is and why we need/want them.
● Defined routing and forwarding.
● Thought about what makes routing valid
● Demonstrated human-based routing and forwarding.

Plan for today

● Types of routing protocols.
● More about Distance-Vector routing protocols.

Inter-domain and Intra-domain routing

● The Internet does not have a single giant routing protocol.

Inter-domain and Intra-domain routing

● The Internet does not have a single giant routing protocol.

● The Internet is a network of networks.
○ How we route traffic on one may not be the best way on another (why?)

Inter-domain and Intra-domain routing

● The Internet does not have a single giant routing protocol.

● The Internet is a network of networks.
○ How we route traffic on one may not be the best way on another (why?)
○ Networks differ!

■ Physical size, number of hosts, number of routers, bandwidth, latency, failure rate,
topology, support staff size, when they were built, $ available…

● So…
○ Let individual networks choose how to route inside their network (intradomain)
○ …have all networks agree on how to route between each other (inter-domain)

Intra-Domain Routing

● ~Within a single network.
○ Technically an “autonomous system”.
○ Run by one operator.
○ Some different protocol requirements – reachability to all different nodes, and to use all

capacity efficiently.
○ Base protocols are often called Interior Gateway Protocols or IGPs.

■ A number are used actively today – OSPF, IS-IS are the most common.

Inter-domain Routing

● Routing between networks.
○ Between autonomous systems really.
○ Used to make many networks into the Internet.
○ Protocols are called Exterior Gateway Protocols (EGPs).
○ There is only one – all ASes must agree.

● The Internet has used BGP since the 1990s.

Choosing Routing Protocols

● Interior and Exterior (intra- and inter-domain) is a convenient shorthand.

● In practice, the lines are more blurred.
○ BGP is used inside some networks as well as at the edges.

● Comes down to what information needs to be propagated and what type of
routing decision is needed.

○ We’ll cover BGP in more depth later.

● We’ll understand the general difference between Distance-Vector and
Link-State protocols.

Least-Cost Routing

Least-Cost Routing

● We said we wanted “good” routes.

Least-Cost Routing

● We said we wanted “good” routes.

● Goal #1: Routes that work.
○ No loops, no dead-ends.

Least-Cost Routing

● We said we wanted “good” routes.

● Goal #1: Routes that work.
○ No loops, no dead-ends.

● Goal #2: Routes that are in some way “good”.
○ Commonly done by minimising some metric, which we might call cost.
○ Hence least-cost routing.

Least-Cost Routing

● We said we wanted “good” routes.

● Goal #1: Routes that work.
○ No loops, no dead-ends.

● Goal #2: Routes that are in some way “good”.
○ Commonly done by minimising some metric, which we might call cost.
○ Hence least-cost routing.

● What did we minimise in the activity last time?

Least-Cost Routing

● We said we wanted “good” routes.

● Goal #1: Routes that work.
○ No loops, no dead-ends.

● Goal #2: Routes that are in some way “good”.
○ Commonly done by minimising some metric, which we might call cost.
○ Hence least-cost routing.

● What did we minimise in the activity last time?
○ Number of people who handled the envelope – the hop count

Least-Cost Routing

● What else might we minimise?

Least-Cost Routing

● What else might we minimise?
○ Price
○ Propagation delay
○ Distance
○ Unreliability
○ Bandwidth constraints

● Metrics can be arbitrarily chosen.
○ We can generically refer to this as “cost”.

Least-Cost Routing

● For a specific network topology, say…

R2

R5 R3

R4

R1

Least-Cost Routing

● For a specific network topology, say…
● A cost is associated with each edge.

R2

R5 R3

R4

R1

1

1

2

10

7 1

Least-Cost Routing

● For a specific network topology, say…
● A cost is associated with each edge.
● And we find the path with the smallest sum

R2

R5 R3

R4

R1

1

1

2

10

7 1

R5→R3 Cost: 12

Least-Cost Routing

● For a specific network topology, say…
● A cost is associated with each edge.
● And we find the path with the smallest sum

R2

R5 R3

R4

R1

1

1

2

10

7 1

R5→R3 Cost: 12

R5→R3 Cost: 5

Least-Cost Routing

● For a specific network topology, say…
● A cost is associated with each edge.
● And we find the path with the smallest sum

● In our activity:
○ Every edge had a cost of 1
○ Hence we minimised for the fewest edges
○ ⇒ fewest number of hops.

● Generally, if an edge cost is not given, assume 1.

R2

R5 R3

R4

R1

1

1

2

10

7 1

R5→R3 Cost: 12

R5→R3 Cost: 5

Where do the costs come from?

● Local to a router.
○ Each router knows the cost of its own links.

● Costs are always positive integers.
○ Can’t traverse an edge and make a path cheaper!

● Costs are almost always symmetrical.
○ A→B generally costs the same as B→A.
○ Some rare exceptions.

● In practice, generally configured by an operator.
● Some protocols allow for autoconfiguration.

Are least cost routes good routes?

● Least-cost routes are an easy way to avoid loops.
○ No (sensible) metric is minimised by traversing a loop.

● Least-cost routes are destination based.

● They form a spanning tree.

“Simple” Route Types

“Connected”/”Direct” Routes

● Sometimes we need to be able to route to things that we’re actually
connected to directly.

● Host A is directly connected to router 1.
○ These routes are created simply because we tell a router something about its configuration.

● Often created manually by operators.

“Static” Routes

● Routes that we aren’t necessarily directly connected to – but we always want
to be there.

● “Static” because they don’t change and there’s no routing protocol used to
discover them.

● Again, often manually created by an operator.

Distance-Vector Routing

Distance-Vector Routing Protocols

● Long history on the Internet and ARPANET.

● The prototypical D-V protocol is RIP.

● Strong relationship to the Bellman-Ford shortest path algorithm.
○ Our exercise was a version of Bellman-Ford.
○ With some tweaks to make it a useful routing protocol.

● We’ll talk about how such a protocol actually works today.

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Start with infinity as
the cost, except for

our destination

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Start with infinity as
the cost, except for

our destination

As we get new
offers, compare

them to our
current cost.

As we get new
offers, compare

them to our current
cost

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Start with infinity as
the cost, except for

our destination

As we get new
offers, compare

them to our
current cost.

Accept the offer
and update our

best friend

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Start with infinity as
the cost, except for

our destination

As we get new
offers, compare

them to our
current cost.

Accept the offer
and update our

best friend

But we didn’t do this in a loop…
We did it in parallel.

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Start with infinity as
the cost, except for

our destination

As we get new
offers, compare

them to our
current cost.

Accept the offer
and update our

best friend And we did this asynchronously - there was
no strict order amongst you.

Bellman-Ford and our In-Class Routing

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

From our exercise -
magic number

From our exercise -
best friend

Start with infinity as
the cost, except for

our destination

As we get new
offers, compare

them to our
current cost.

Accept the offer
and update our

best friend

And no-one iterated through all the people
in the room…

we self-terminated when we converged.

Building a Distance-Vector Protocol

● The same core approach as Bellman-Ford.

● Thinking about your table…

Your Table

Dst NextHop, Distance

Sarah Person in front of me, 14

Building a Distance-Vector Protocol

Your Table

Dst NextHop, Distance

Sarah Person in front of me, 14

● Person to your left tells you “I can reach Sarah in 7”.
○ We call this communication advertising a route with distance/cost = 7.

● You updated your table…
○ With the cost + 1 (distance to Sarah, plus the distance to your neighbour)
○ If the cost was less than the one in your table.

Building a Distance-Vector Protocol

Your Table

Dst NextHop, Distance

Sarah Person in front of me, 14 Person to my left, 8

● Person to your left tells you “I can reach Ian in 7”.
○ We call this communication advertising a route with distance/cost = 7.

● You updated your table…
○ With the cost + 1 (distance to Ian, plus the distance to your neighbour)
○ If the cost was less than the one in your table.

Building a Distance-Vector Protocol

Your Table

Dst NextHop, Distance

Sarah Person in front of me, 14 Person to my left, 8

● Person in front tells you, “I can reach Rachel in 3”.
○ Rachel?

Building a Distance-Vector Protocol

Your Table

Dst NextHop, Distance

Sarah Person in front of me, 14 Person to my left, 8

Rachel Person in front of me, 4

● Add a new row (for a new destination) Rachel.
● Using the same cost logic.

○ Cost to Rachel plus the distance to your neighbour = 3+1 = 4

● We can keep doing this for all destinations we hear about.

Distance-Vector

R1A R3

Dst Nxt,Cost Dst Nxt,Cost

R2

Dst Nxt,Cost

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1

Only R1 needs to know its own next hop!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

No “A” route in table!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A

R1 A:1

No “A” route in table!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1

R1 A:1

No “A” route in table!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R1 A:1

No “A” route in table! +1 for the link to R1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

2+1 = 3

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

2+1 = 3
Worse than current route
⇒ do not adjust.

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

R3 A:3

3+1 = 4
Worse than current route.
Leave current route alone.

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

We’ve converged! 🥳

Questions?

D-V: An exception to the update rule

● Our logic for when to update a route:
○ If destination not in table -- add to table

R8

Dst Nxt,Cost

F R5,6

R11R5

D-V: An exception to the update rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

R8

Dst Nxt,Cost

F R5,6

R11R5

R11 F:9��

D-V: An exception to the update rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

R8

Dst Nxt,Cost

F R5,6

R11R5

R5 F:9

D-V: An exception to the update rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current
○ If advertiser is current_next_hop -- replace current

R8

Dst Nxt,Cost

F R5,10

R11R5

R5 F:9

D-V:

Is our D-V protocol reliable?

D-V: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

D-V: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

Something bad happened!
Packet got dropped!

 🔥
 ☠

D-V: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

Something bad happened!
Packet got dropped!

 🔥
 ☠

Super simple reliability
Resend advertisements every X seconds. (X=advertisement interval)

This should always work eventually (assuming link works at all).
Sending on change (triggered updates) acts as an optimisation.

Questions?

D-V: Split Horizon

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

R2 A:2

D-V: Split Horizon

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

R3 A:3

D-V: Split Horizon

R1A R3R2

Dst Nxt,Cost Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

D-V: Split Horizon

R1A R3R2

Dst Nxt,Cost Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R3, 4

R3 A:3

D-V: Split Horizon

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R3,4

R2 A:4

Huh?! A is local to R1?!

D-V: Split Horizon

● What is the advantage in advertising a path back to the person who sent it
you?

● Telling them about your entry via them:
○ Doesn’t tell them anything new.
○ Misleads them into thinking you have an independent path.

D-V: Split Horizon

● What is the advantage in advertising a path back to the person who sent it
you?

● Telling them about your entry via them:
○ Doesn’t tell them anything new.
○ Misleads them into thinking you have an independent path.

● Solution:
○ If you are using a next-hop’s path for some destination – don’t advertise it to them.
○ Referred to as Split Horizon

Questions?

D-V: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R3,4

R2 A:4

D-V: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,3 5

Dst Nxt,Cost

A R3,4

R2 A:4

D-V: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R3,4 6

R3 A:5

D-V: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,5 7

Dst Nxt,Cost

A R3,6

R2 A:7

Route costs on R2/R3 count to infinity!

Solution: Pick a maximum value (e.g., 16) and stop there.

D-V: Failures

 🔥 🔥R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

4

 🔥 🔥

Had been getting A:1
advertisement from R1

every 10 seconds…
but not any more!

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥
Dst Nxt,Cost TTL

A R2,3

Dst Nxt,Cost TTL

A R1,2

Each route only has a finite Time To Live (e.g., 21 seconds).
Gets “recharged” by the periodic advertisements.

If you don’t get a periodic update (e.g., 10 seconds)… expire & remove route.

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥
Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R1,2 21

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥
Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R1,2 21

t=0

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥
Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R1,2 11

t=10

R2 A:2

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥
Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R1,2 1

t=20

R2 A:2

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥
Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R1,2 1

t=21

How do we deal with changing topology?
Link failures.

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

Static and connected
routes

don’t expire

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

R1 A:1

t=0

R1 A:1

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 21

Dst Nxt,Cost TTL

A R1,2 21

t=0

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 16

Dst Nxt,Cost TTL

A R1,2 16

R2 A:2

t=5

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 R2,3 16 21

Dst Nxt,Cost TTL

A R1,2 16

R2 A:2

t=5

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

R1 A:1

t=10

R1 A:1

Ignored

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

R1 A:1

t=10

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

R1 A:1

t=10

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

t=10

 🔥 🔥 🔥 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 11 21

Dst Nxt,Cost TTL

A R1,2 16

t=15

 🔥 🔥 R2 A:2 🔥 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

t=20

R1 A:1
 🔥 🔥 🔥 🔥R1 A:1

 🔥

Ignored
again

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16 21

Dst Nxt,Cost TTL

A R1,2 6

R2 A:2

t=25

 🔥 🔥 🔥 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 1

t=30

R1 A:1
 🔥 🔥 🔥 🔥R1 A:1

 🔥

Ignored
again

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

t=31

 🔥 🔥 🔥 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

t=31

 🔥 🔥 🔥 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

t=46

 🔥 🔥 🔥 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

t=50

R1 A:1
 🔥 🔥 🔥 🔥

Accepted this
time!

R1 A:1
 🔥

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 19

Dst Nxt,Cost TTL

t=52

R3 A:5
 🔥 🔥 🔥 🔥

Ignored

R3 A:5

D-V: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 19

Dst Nxt,Cost TTL

A R3,6 21

t=52

 🔥 🔥 🔥 🔥

Showing the absence of a route - poisoning.

D-V: Poisoning

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

 🔥 🔥 🔥 🔥

t=31

t=31

D-V: Poisoning

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

 🔥 🔥 🔥 🔥

t=31

t=31

D-V: Poisoning

t=40

t=31

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 6

Dst Nxt,Cost TTL

R1 A:1
 🔥 🔥 🔥 🔥

Rejected

R1 A:1
 🔥

D-V: Poisoning

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

t=31

t=31

 🔥 🔥 🔥 🔥

D-V: Poisoning
4

t=31

t=31

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 None,∞ 21

t=31

 🔥 🔥 🔥 🔥

D-V: Poisoning
4

t=35

t=31t=31

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 11

Dst Nxt,Cost TTL

A R1,2 None,∞ 17

 🔥 🔥 🔥 🔥 R2 A:∞

D-V: Poisoning
4

t=35

t=31t=31

4

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 ∞ 21

Dst Nxt,Cost TTL

A R1,2 None,∞ 17

 🔥 🔥 🔥 🔥 R2 A:∞

D-V: Poisoning
4

t=31

4

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,∞ R1,5 16 21

Dst Nxt,Cost TTL

A None,∞ 12

t=40

t=40

R1 A:1
 🔥 🔥 🔥 🔥

Accepted

R1 A:1
 🔥

D-V: Poison

● Key idea:
○ Instead of just not advertising a route
○ .. actively advertise that you don’t have a route

● Do this by advertising an impossibly high cost
○ A “poison” route

● This route should propagate like other routes, poisoning the entry on any
other router that was using it

● Can be much faster than waiting for timeouts!

D-V: Poison

● And this doesn’t just work for timed advertisements…

● If you get a poison advertisement and it changes your table…
○ Will trigger you to send poison
○ Propagates dead routes as fast as they can reach and be processed by

neighbor!

● .. can be much, much faster than waiting for timeouts!

D-V: Poison

● Besides expired routes, where else did we not advertise something?

D-V: Poison

● Besides expired routes, where else did we not advertise something?
○ Split horizon!

● In split horizon, we had a route but chose not to advertise
○ Don’t want to advertise a route back to router that advertised it to us!
○ Can lead to sending things backwards (or even looping)

D-V: Poison

● Besides expired routes, where else did we not advertise something?
○ Split horizon!

● In split horizon, we had a route but chose not to advertise
○ Don’t want to advertise a route back to router that advertised it to us!
○ Can lead to sending things backwards (or even looping)

● Instead of not advertising in this case… advertise infinite cost
○ We call this poison reverse

○ Same exact idea as split horizon, but more aggressive

D-V: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R1,2 8

Dst Nxt,Cost TTL

A R1,2 8

 🔥
 ☠

D-V: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R1,2 0.001

Dst Nxt,Cost TTL

A R1,2 0.001

R2 A:2

R3 A:2 🔥
 ☠

D-V: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R3,3 21

With split horizon, loopy
state exists until expiration

 🔥
 ☠

D-V: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 11

Dst Nxt,Cost TTL

A R3,3 11

 🔥
 ☠

D-V: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 11

Dst Nxt,Cost TTL

A R3,3 11

R2 A:∞

R3 A:∞ 🔥
 ☠

D-V: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,∞ 21

Dst Nxt,Cost TTL

A R3,∞ 21

R2 A:∞

R3 A:∞

With poison reverse, loopy state
exists until next advertisement

 🔥
 ☠

D-V: Poison

● Poisoning and poison reverse…

● In both cases, without poisoning, you would have not sent a route
● Instead, send an explicitly terrible route (any other route will be better)

● (And never forward using these terrible infinite-length routes.)

D-V: More triggers

● We know that our table changing should trigger us to send an update

● Can be useful to handle other events too...

D-V: More triggers

● We know that our table changing should trigger us to send an update

● Can be useful to handle other events too…

● Sometimes we can detect when a link becomes available
○ Immediately send new neighbor advertisements
○ No need to wait for timer

D-V: More triggers

● We know that our table changing should trigger us to send an update

● Can be useful to handle other events too…

● Sometimes we can detect when a link becomes available
○ Immediately send new neighbor advertisements
○ No need to wait for timer

● Sometimes we can detect when a link fails
○ Immediately poison all table entries using that link
○ .. if there are any, advertise the newly poisoned ones!

From B-F to D-V

● We refined our update rule
● We resolved some loopy problems with split horizon
● We ensured that we eventually converge instead of counting to infinity
● We made it robust to packet drops by advertising periodically
● We saw that we can adapt to new links easily
● We can identify failed links and dead routes by missing advertisements
● We can converge faster by explicitly signaling the absence of a route
● We can adapt more quickly by advertising when “triggered” by events

● This is now a pretty good routing protocol!

Next Time

● Other types of routing protocols - Link State.

● Thus far - addressing has been an abstract concept.

● How do we address hosts on the Internet?
○ IPv4, IPv6.

● How do we avoid the need to advertise every single host in routing
protocols?

