
Routing #3 / Addressing
Spring 2024

cs168.io

Rob Shakir

http://cs168.io
http://cs168.io

Last Time

● We’ve talked a lot about distance-vector routing protocols.

Plan for today

● Types of routing protocols.
● Another type of protocol: Link State.
● Addressing – IPv4 + IPv6.

Link-State Protocols

Link-State Routing

● As mentioned, another major class of routing protocols.
● Very common as an Interior Gateway Protocol.

● Major examples:
○ IS-IS (Intermediate System to Intermediate System)
○ OSPF (Open Shortest Path First)

● Very different operation to Distance-Vector!

Distance-Vector vs. Link-State

● Distance-Vector
○ Global computation (distributed across all nodes)
○ Only local data (local node plus whatever our neighbours told us).

Distance-Vector vs. Link-State

● Distance-Vector
○ Global computation (distributed across all nodes)
○ Only local data (local node plus whatever our neighbours told us).

● Link-State
○ Local computation
○ Using global data (from all parts of the network)

Link-State

● A router locally computes routing state
● …using “global data” (?!)

● What is “global data”?
○ The state of every link in the network.
○ Is it up or down?
○ What is its cost?

Global Data in Link-State

● Going back to our handy topology.

● Information about state of links:
○ R1-R2 exists, and has cost 1
○ R1-R3 exists, and has cost 10
○ R4-5 exists and has cost 7
○ etc.

R2

R5 R3

R4

R1

1

1

2

10

7 1

Global Data in Link-State

● Going back to our handy topology.

● Information about state of links:
○ R1-R2 exists, and has cost 1
○ R1-R3 exists, and has cost 10
○ R4-5 exists and has cost 7
○ Etc.

● Information about destinations:
○ R3 has destination A
○ R4 has destination B

R2

R5 R3

R4

R1

1

1

2

10

7 1

B

A

Global Data in Link-State

● Going back to our handy topology.

● Information about state of links:
○ R1-R2 exists, and has cost 1
○ R1-R3 exists, and has cost 10
○ R4-5 exists and has cost 7
○ Etc.

● Information about destinations:
○ R3 has destination A
○ R4 has destination B

● This can be used to build a global view
of the topology.

R2

R5 R3

R4

R1

1

1

2

10

7 1

B

A

Global Data in Link-State

● With this global view, we can easily
compute paths.

● If we’re R5 – what’s the best path to A?
○ R5, R2, R1, R4, R3, A

● What’s useful to R5 for forwarding?
○ Only the next-hop → R2.

R2

R5 R3

R4

R1

1

1

2

10

7 1

B

A

Dst Nxt

A R2

Link-State: Overview

● Every router in the topology:
○ Gets the state of all links and the location of all destinations.

○ Uses that information to build a full graph.

○ Finds paths from itself to every destination on the graph.

○ Uses the next-hop (adjacent router) in those paths to populate the forwarding table.

Link-State: Overview

● Every router in the topology:
○ Gets the state of all links and the location of all destinations.

■ Need some way to distribute this graph!

○ Uses that information to build a full graph.
■ Glue together all link/destination information received.

○ Finds paths from itself to every destination on the graph.
■ Run some algorithm over the graph.

○ Uses the next-hop (adjacent router) in those paths to populate the forwarding table.

Link-State: Algorithms

● Since each router has the complete topology - we just need a Single
Source Shortest Path algorithm.

● Some obvious choices:
○ Bellman-Ford (serial)
○ Dijkstra’s algorithm

● Can we do better?
○ Breadth-first search
○ Dynamic shortest path
○ Approximate shortest path
○ Parallel SSSP

Link-State: Overview

● Every router in the topology:
○ Gets the state of all links and the location of all destinations.

■ Need some way to distribute this graph!

○ Uses that information to build a full graph.
■ Glue together all link/destination information received.

○ Finds paths from itself to every destination on the graph.
■ Run some algorithm over the graph.

○ Uses the next-hop (adjacent router) in those paths to populate the forwarding table.

Link-State: Populating Tables

● Remember: each router can only influence its own next-hop.

● Other routers must be using an approach which is “compatible”.

R2

R5 R3

R4

R1

1

1

2

10

7 1

B

A
R2

R5 R3

R4

R1

1

1

2

10

7 1

B

A

Link-State: Populating Tables

● Remember: each router can only influence its own next-hop.

● Other routers must be using an approach which is “compatible”.

● Simple for least-cost routing if:
○ Minimising the same cost metric.
○ All costs are > 0.

Link-State: Populating Tables

● Remember: each router can only influence its own next-hop.

● Other routers must be using an approach which is “compatible”.

● Simple for least-cost routing if:
○ Minimising the same cost metric.
○ All costs are > 0.
○ All routers agree on topology.

● Given these, can have different algorithms (e.g., break ties the same).
○ Since we can guarantee no loops.

L-S: Learning about the topology

● We need to understand information about:
○ All links between all routers.
○ All destinations.

● We need to:
○ Discover who my neighbours are.
○ Tell everyone about my neighbours.
○ Tell everyone about destinations attached to me.

L-S: Learning about the topology

● We need to understand information aout:
○ All links between all routers.
○ All destinations.

● We need to:
○ Discover who my neighbours are.
○ Tell everyone about my neighbours.
○ Tell everyone about destinations attached to me.

L-S: Hello Messages

● How do we find who is adjacent to us and their identity?
○ Say hello!

● Routers periodically send hello messages to neighbours.
○ If they stop saying hello, assume that they disappeared.

L-S: Hello Messages

● How do we find who is adjacent to us and their identity?
○ Say hello!

● Routers periodically send hello messages to neighbours.
○ If they stop saying hello, assume that they disappeared.

Hi, I’m Bert Hi, I’m Ernie

Hi, I’m
Cookie

Monster

B E B E C E C

L-S: Learning about the topology

● We need to understand information about:
○ All links between all routers.
○ All destinations.

● We need to:
○ Discover who my neighbours are by exchanging hellos.
○ Tell everyone about my neighbours.
○ Tell everyone about destinations attached to me.

L-S: Flooding

● Exchanging hellos just finds your next-door neighbour.
● But we need to know about everyone within the network.

● Solution: flood information across the network.

● Straw-person solution:
○ When local information changes – send it to everyone.
○ When you receive information from your neighbour – send it to everyone else.

Bert and Ernie
are neighbours,
tell everyone!

L-S: Flooding

● Does this always work?

https://docs.google.com/file/d/1esz4sa9r8q9aFRONMfefUQC5-qzrbFdG/preview

Link State: Flooding

● Naïve solution causes amplification:
○ One-loop – packets get forwarded forever.
○ Multiple loops – packets multiply exponentially.

● Solution:
○ When local information changes, send to all neighbours.
○ When you receive a packet from a neighbour, send to all other neighbours.

■ Unless you’ve already seen it!

● Identifying packets you have seen can be via a sequence number or any
other unique identifier.

Link State: Flooding

● Naïve solution causes amplification:
○ One-loop – packets get forwarded forever.
○ Multiple loops – packets multiply exponentially.

● Solution:
○ When local information changes, send to all neighbours.
○ When you receive a packet from a neighbour, send to all other neighbours.

■ Unless you’ve already seen it!

● Identifying packets you have seen can be via a sequence number or any
other unique identifier.

Link State: Flooding Reliability

● We need to make sure that other routers don’t “miss” updates.
○ Remember, we wanted a consistent view of the network!

● Use the same trick as D-V protocols: periodically re-send the packet.
○ IS-IS and OSPF both do these things.

● Generally, this ties in with reliability of message delivery.

L-S: Convergence

● When a failure occurs, Dijkstra (or similar) will avoid a looping path.

● However, we can still have loops in link state protocols.

● We only control our own next-hop.
○ If our neighbour doesn’t know about a link failure – i.e., has a different topology
○ …they might forward back to us!

● For example:
○ R1, which doesn’t know about a failure, forwards to R3
○ R3 sends packet to R1.

L-S: Convergence

● Link-State protocols rely on the graph being consistently understood to
converge.

● Sources of delay:
○ Time to detect failure.
○ Time to flood link-state information.
○ Time to recompute paths.

● During convergence.
○ Dead-ends
○ Loops
○ Out of order delivery

L-S: Overview

● Simple concept:
○ Everyone floods link/destination information
○ Everyone has a global map of the network
○ Everyone independently computes next-hops

● All the complexity is in the details!

Why might we use a link-state protocol?

● Aren’t Link State protocols just worse?

● Distance-Vector hides some details from each node.
○ Must accept what our neighbour told us, and we don’t know what the path is.

● Distance-Vector relies on our neighbour recomputing and readvertising their
path.

● Link state protocols can:
○ Flood information before recomputing (just tell everyone the state).
○ Make all the topology available to every node (so they know what path they are choosing)

● Generally, we use a path/distance vector and link state protocol in
combination in real networks.

Addressing

Thus far…

Dst Nxt,Cost TTL

A Direct,1 ---Routing Table

R2’s Table

Dst Port

A 0

B 1

C 1

D 2

Forwarding Table

Thus far…

Dst Nxt,Cost TTL

A Direct,1 ---Routing Table

R2’s Table

Dst Port

A 0

B 1

C 1

D 2

Forwarding Table

One entry per destination

Really?

● Can we really scale routing and forwarding tables to every host on the
Internet?

● If routing on the Internet is D-V, how long does it take to reconverge and
how many routing calculations does each router do?

● If routing on the Internet is L-S, can we really store the entire state of the
network including all hosts at each node?

Really?

● Can we really scale routing and forwarding tables to every host on the
Internet?

● If routing on the Internet is D-V, how long does it take to reconverge and
how many routing calculations does each router do?

● If routing on the Internet is L-S, can we really store the entire state of the
network including all hosts at each node?

● No.

So…

● We’ve referred to each node just based on some name.
○ e.g., R1, R2, A.

● But is that really the case?

● The “secret” to scaling routing ⇒ how we do addressing!

Addressing at each Layer

● Remember, we talked about our letter example.
○ If I send a letter to Sylvia…

■ FedEx used Soda Hall’s address.
■ The department used 413 Soda’s address.
■ Inside 413, we used Sylvia’s name.

● Each layer had a separate type of address.
○ This is the same on the Internet.

● We’ll come back to Layer 2, we’re going to mainly talk about Layer 3 today.

IP addresses

● You’ll have seen them when thinking about networking at home.
● But sometimes they are hidden.

○ We’ll talk about that later.

● Two flavours: IPv4 and IPv6.
○ The fundamentals for routing are similar.
○ We’ll use IPv4 mainly in our examples.

● A number assigned to each host on the network.
○ 32bits for IPv4.
○ 128bits for IPv6.

Addressing in the Early Internet

● The Internet is a network of networks.

Cloud Provider

National ISP

Regional
ISP

University

Addressing in the Early Internet

● The Internet is a network of networks.
○ Leads naturally to a hierarchy of addresses.
○ And hierarchy is one of the ways to address scaling!

Cloud Provider

National ISP

Regional
ISP

University

Addressing in the Early Internet

● The Internet is a network of networks.
○ Leads naturally to a hierarchy of addresses.
○ And hierarchy is one of the ways to address scaling!

● You could imagine giving each
network a number.

○ Then each host a number.

● This would give us hierarchical
addresses.

3214UniversityCloud ProviderNational ISPRegional
ISP

3

2

1

0

Addressing in the Early Internet

● The Internet is a network of networks.
○ Leads naturally to a hierarchy of addresses.
○ And hierarchy is one of the ways to address scaling!

● You could imagine giving each
network a number.

○ Then each host a number.

● This would give us hierarchical
addresses.

3214UniversityCloud ProviderNational ISPRegional
ISP

3

2

1

0

This host could be 3.7

Addressing in the Early Internet

● The Internet is a network of networks.
○ Leads naturally to a hierarchy of addresses.
○ And hierarchy is one of the ways to address scaling!

● You could imagine giving each
network a number.

○ Then each host a number.

● This would give us hierarchical
addresses.

3214UniversityCloud ProviderNational ISPRegional
ISP

3

2

1

0

Or it could be 3.42.7.1

Hierarchical Addressing

● Routing between domains can now think only about the network
part.

● Inter-domain routing: 4 nodes!

● Limits both:
○ Table size
○ Churn

■ Changes inside domains ==
no recalculation in other
domains.

● Huge scaling improvement.

3

2

1

4

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…

R9 R6

R8

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

● .. and routes for other networks

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

1.* ?

2.* ?

4.* ?

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

● .. and routes for other networks

● So total state scales with number
of hosts in this network plus
number of other networks

● Again: big scalability improvement
assuming many more hosts than
networks

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

1.* ?

2.* ?

4.* ?

Wait…what?

1.* → ?

Wait…what?

1.* → ?

Hierarchy means that we might need our
routing and forwarding to understand some

form of wildcards.

Wait…what?

1.* → ?

We’ll come back to this when we talk about how
routers do matches for forwarding. For routing -

we carry this “wildcard” information.

Improving scale with wildcards.

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9

● What routing information does
R2 need?

Improving scale with wildcards.

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9

● What routing information does
R2 need?

● Everything is reached through R3.

● So a wildcard can be used.
○ *.*
○ Called the default route.

● Most hosts just have this route!

Hierarchical Addressing

● Note that addresses aren’t assigned randomly!
● Hosts that are “close to each other” (in some sense) share part of their address
● We leverage this structure to make routing (and forwarding) scale better

● We use structured addresses like this all the time!
● Soda Hall #413 is much easier to work with than if we just numbered every office in

the world uniquely…

● This also explains why hosts don’t generally participate in routing protocols…
● A human decided how to divide up the network in a way that makes sense
● Your computer doesn’t have its own IP address wherever it goes…
● .. it changes it address depending on where it is
● .. it “moves in” to the network where it’s attached (and gets a new address there)

Our letter example

● Inside FedEx for a letter from London () to Berkeley.

● Hierarchical lookups:
○ USA
○ California
○ Berkeley
○ 2551 Hearst Ave (Soda Hall)
○ 413
○ Sylvia Ratnasamy

Implications of Hierarchical Addressing

● Assuming addresses have two parts: Network.Host

● Border routers figure out routes between networks

● Internal routers figure out host routes for hosts in that network
.. and may propagate the network routes from the EGP (it's one way to do it)

● Scales much better than “flat” routing:
○ Border routers don’t see churn inside networks
○ Internal routers don’t see churn in other networks
○ Routers only need state for:

■ Hosts in their network
■ And other networks themselves

Addressing in the Early Internet

● Not very many organisations.
● Give them all a unique number!

● Maybe lots of hosts inside their organisation with different hierarchy.
○ Our summarisation can be used internally.

Addressing in the Early Internet

● Not very many organisations.
● Give them all a unique number!

● Maybe lots of hosts inside their organisation with different hierarchy.
○ Our summarisation can be used internally.

● So – addresses are 32-bits long (IPv4).
○ Historically:

■ Organisation ID == 8 bits.
■ Host ID == 24 bits.

Addressing in the Early Internet

● AT&T: ID = 12
● Apple: ID = 17
● Ford: ID = 19
● Dept. of Defense: ID = 6, 7, 11, 21, 22, 26, 28, 29, 30, 33, 55, 214, 215.

Addressing in the Early Internet

● AT&T: ID = 12
● Apple: ID = 17
● Ford: ID = 19
● Dept. of Defense: ID = 6, 7, 11, 21, 22, 26, 28, 29, 30, 33, 55, 214, 215.

● Wait – 2^8 = 256.
○ DoD = 13/256ths of the address space?

● Let’s come back to this.

Representing IPv4 addresses

● You could just represent an IPv4 address as a single big integer
● But far more common is a dotted quad or dot quad

17 34 158 5

17.34.158.5

Network Part

(or 17.2268677)

Scaling addressing.

● Assigned the first 8-bits to “network ID”.

● Joe’s Tyre Shop: 10 computers but wants to connect to the Internet.
○ ID = 42.
○ 2^24 = 16777216 addresses.

● And we already gave DoD 13 * 2^24 = 218103808 addresses.

Scaling addressing.

● Assigned the first 8-bits to “network ID”.

● Joe’s Tyre Shop: 10 computers but wants to connect to the Internet.
○ ID = 42.
○ 2^24 = 16777216 addresses.

● And we already gave DoD 13 * 2^24 = 218103808 addresses.

● We’re going to run out! 😱

“Classful” Addressing

● Allocate different size blocks based on need.

network host 0

0 8
126 nets

~16M hostsClass A

network host 1

160

0
~16K nets

~65K hostsClass B

~2M nets
254 hosts

network host 1

240

1 0Class C

Classful Addressing: Fixing bits.

● What is a “Class B”?

● Fixing 16 bits of the address to be constant, the rest is variable.

Classful Addressing: Fixing bits.

● What is a “Class B”?

● Fixing 16 bits of the address to be constant, the rest is variable.

11000000

10101000

00000000

00000000

192

168

0

0

11000000

10101000

11111111

11111111

192

168

255

255

Classful Addressing

● Ran into problems of its own!

● The sizes of the classes weren’t that useful
● Class A far too big for most organizations!
● Class C far too small for many organizations!
● Class B is best option for many

● Still too big for many organizations
● Not that many of them!

● Running out of Class B? That’s a lot of routes…
● Number of interdomain routes was going up!

Classful Addressing

1989 1990 1991 1992 1993 1994

20,000

10,000

15,000

5,000

● Number of interdomain routes by year (approximate)

CIDR: Classless Inter-Domain Routing

● Our wildcards are arbitrary.
○ 1.*.*.* just means “the first 8 bits are 00000001”.

● Classes are just dividing based on “convenient” 8-bit boundaries.
○ 8 = Class A
○ 16 = Class B
○ 24 = Class C

● What happens if we made the number of fixed bits arbitrary?

CIDR: Classless Inter-Domain Routing

● Return to Joe’s Tyre Shop.
○ 10 computers.

● Rather than giving them a Class C (2^(32-24) = 256 addresses).
○ Can we give them fewer?

CIDR: Classless Inter-Domain Routing

● Return to Joe’s Tyre Shop.
○ 10 computers.

● Rather than giving them a Class C (2^(32-24) = 256 addresses).
○ Can we give them fewer?

● Yes, fix more bits!

CIDR: Classless Inter-Domain Routing

● Return to Joe’s Tyre Shop.
○ 10 computers.

● Rather than giving them a Class C (2^(32-24) = 256 addresses).
○ Can we give them fewer?

● Yes, fix more bits!

● Can we give them 10 addresses?

CIDR: Classless Inter-Domain Routing

● Can we give them 10 addresses?

● Fix 28 bits: 2^(32-28) = 16 addresses.

● Fix 29 bits: 2^(32-29) = 8 addresses.

● No…

CIDR: Classless Inter-Domain Routing

● Can we give them 10 addresses?

● Fix 28 bits: 2^(32-28) = 16 addresses.

● Fix 29 bits: 2^(32-29) = 8 addresses.

● No…but at least we didn’t need to give them 256 addresses.

CIDR: Classless Inter-Domain Routing

● A Class B: 2^(32-16) = 65536
● A Class C: 2^(32-24) = 256

● If we can fix only 23 bits for someone that needs 450 addresses we save a
lot of addresses!

Hierarchical Assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Gives out blocks of addresses to….

● Regional Internet Registries (RIRs)...
○ RIPE (EU), ARIN (NA), APNIC (Asia/Pacific), LACNIC (SA), AFRINIC (Africa)
○ Give out portions to…

● Large organisations or ISPs…
○ Called Local Internet Registries (in the RIPE region)
○ Who give out portions to...

● Small organisations and individuals.
○ E.g., UC Berkeley, Rob’s startup.

CIDR allows more granular assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Fixes 4 bits and assigns this to ARIN – 2^(32-4) = 268435456 addresses.

● Regional Internet Registries (RIRs)...
○ ARIN allocates 8,000,000 addresses to AT&T.
○ Requires 23 bits (2^23 = 8,388,608) of the address to be variable.
○ Fixes (32-23) = 9 bits

● AT&T
○ Allocates 16,000 addresses to UC Berkeley.
○ Requires 14 bits of the address to be variable (2^14 = 16,384)
○ Fixes (32-14) = 18 bits.

● UCB…
○ Now can determine how it wants to split its addresses.
○ Allocates 200 addresses to Soda Hall.
○ Requires 8 bits of the address to be variable (2^8 = 256).
○ Fixes (32-8) = 24 bits.

● Prof. Ratnasamy...
○ Allocates 1 address to Rob.
○ Requires 0 bits of the address to be variable (2^0 = 1)
○ Fixes (32-0) = 32 bits.

1101
208.0.0.0

CIDR allows more granular assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Fixes 4 bits and assigns this to ARIN – 2^(32-4) = 268435456 addresses.

● Regional Internet Registries (RIRs)...
○ ARIN allocates 8,000,000 addresses to AT&T.
○ Requires 23 bits (2^23 = 8,388,608) of the address to be variable.
○ Fixes (32-23) = 9 bits

● AT&T
○ Allocates 16,000 addresses to UC Berkeley.
○ Requires 14 bits of the address to be variable (2^14 = 16,384)
○ Fixes (32-14) = 18 bits.

● UCB…
○ Now can determine how it wants to split its addresses.
○ Allocates 200 addresses to Soda Hall.
○ Requires 8 bits of the address to be variable (2^8 = 256).
○ Fixes (32-8) = 24 bits.

● Prof. Ratnasamy...
○ Allocates 1 address to Rob.
○ Requires 0 bits of the address to be variable (2^0 = 1)
○ Fixes (32-0) = 32 bits.

1101
208.0.0.0

110111001
220.128.0.0

CIDR allows more granular assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Fixes 4 bits and assigns this to ARIN – 2^(32-4) = 268435456 addresses.

● Regional Internet Registries (RIRs)...
○ ARIN allocates 8,000,000 addresses to AT&T.
○ Requires 23 bits (2^23 = 8,388,608) of the address to be variable.
○ Fixes (32-23) = 9 bits

● AT&T
○ Allocates 16,000 addresses to UC Berkeley.
○ Requires 14 bits of the address to be variable (2^14 = 16,384)
○ Fixes (32-14) = 18 bits.

● UCB…
○ Now can determine how it wants to split its addresses.
○ Allocates 200 addresses to Soda Hall.
○ Requires 8 bits of the address to be variable (2^8 = 256).
○ Fixes (32-8) = 24 bits.

● Prof. Ratnasamy...
○ Allocates 1 address to Rob.
○ Requires 0 bits of the address to be variable (2^0 = 1)
○ Fixes (32-0) = 32 bits.

1101
208.0.0.0

110111001
220.128.0.0

110111001110100010
220.232.128.0

CIDR allows more granular assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Fixes 4 bits and assigns this to ARIN – 2^(32-4) = 268435456 addresses.

● Regional Internet Registries (RIRs)...
○ ARIN allocates 8,000,000 addresses to AT&T.
○ Requires 23 bits (2^23 = 8,388,608) of the address to be variable.
○ Fixes (32-23) = 9 bits

● AT&T
○ Allocates 16,000 addresses to UC Berkeley.
○ Requires 14 bits of the address to be variable (2^14 = 16,384)
○ Fixes (32-14) = 18 bits.

● UCB…
○ Now can determine how it wants to split its addresses.
○ Allocates 200 addresses to Soda Hall.
○ Requires 8 bits of the address to be variable (2^8 = 256).
○ Fixes (32-8) = 24 bits.

● Prof. Ratnasamy...
○ Allocates 1 address to Rob.
○ Requires 0 bits of the address to be variable (2^0 = 1)
○ Fixes (32-0) = 32 bits.

1101
208.0.0.0

110111001
220.128.0.0

110111001110100010
220.232.128.0

110111001110100010011010
220.232.154.0

CIDR allows more granular assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Fixes 4 bits and assigns this to ARIN – 2^(32-4) = 268435456 addresses.

● Regional Internet Registries (RIRs)...
○ ARIN allocates 8,000,000 addresses to AT&T.
○ Requires 23 bits (2^23 = 8,388,608) of the address to be variable.
○ Fixes (32-23) = 9 bits

● AT&T
○ Allocates 16,000 addresses to UC Berkeley.
○ Requires 14 bits of the address to be variable (2^14 = 16,384)
○ Fixes (32-14) = 18 bits.

● UCB…
○ Now can determine how it wants to split its addresses.
○ Allocates 200 addresses to Soda Hall.
○ Requires 8 bits of the address to be variable (2^8 = 256).
○ Fixes (32-8) = 24 bits.

● Prof. Ratnasamy...
○ Allocates 1 address to Rob.
○ Requires 0 bits of the address to be variable (2^0 = 1)
○ Fixes (32-0) = 32 bits.

1101
208.0.0.0

110111001
220.128.0.0

110111001110100010
220.232.128.0

110111001110100010011010
220.232.154.0

11011100111010001001101001011101
220.232.154.93

CIDR allows more granular assignment

● ICANN (Internet Corporation for Names and Numbers)
○ Fixes 4 bits and assigns this to ARIN – 2^(32-4) = 268435456 addresses.

● Regional Internet Registries (RIRs)...
○ ARIN allocates 8,000,000 addresses to AT&T.
○ Requires 23 bits (2^23 = 8,388,608) of the address to be variable.
○ Fixes (32-23) = 9 bits

● AT&T
○ Allocates 16,000 addresses to UC Berkeley.
○ Requires 14 bits of the address to be variable (2^14 = 16,384)
○ Fixes (32-14) = 18 bits.

● UCB…
○ Now can determine how it wants to split its addresses.
○ Allocates 200 addresses to Soda Hall.
○ Requires 8 bits of the address to be variable (2^8 = 256).
○ Fixes (32-8) = 24 bits.

● Prof. Ratnasamy...
○ Allocates 1 address to Rob.
○ Requires 0 bits of the address to be variable (2^0 = 1)
○ Fixes (32-0) = 32 bits.

1101
208.0.0.0

110111001
220.128.0.0

110111001110100010
220.232.128.0

110111001110100010011010
220.232.154.0

11011100111010001001101001011101
220.232.154.93

How do we know that
220.128.0.0 is in the

allocation?

CIDR Notation

● We need to show how many bits are fixed in the network address in order to
know the range.

● Use “slash notation”:
○ 192.168.0.0/16 → 16 bits are fixed.

■ 192.168.0.0 – 192.168.255.255
○ 192.168.1.0/24 → 24 bits are fixed.

■ 192.168.1.0 – 192.168.1.255
○ 192.168.1.0/29 → 29 bits are fixed.

■ 192.168.1.0 – 192.168.1.7
○ 192.168.1.1/32 → 32 bits are fixed.

■ 192.168.1.1

An alternative: netmask notification

● Alternative to slash notation.

● Set a 1 for every bit that is fixed – and represent it as a “dotted quad”.

● 11111111 11111111 11111111 11111111 = 255.255.255.255 (32)
● 11111111 11111111 11111111 11111000 = 255.255.255.248 (29)
● etc.

● Equivalent notations.
○ But slash notation is much more convenient.

CIDR and Route Scaling

● Also solving for the number of Inter-Domain Routes.

Route Aggregation

AT&T
4.x.x.x

UCB
130.x.x.x

UCM
146.x.x.x

Orange, SA
(France)

R13 R42

R42’s Table

Dst Nxt

4.x.x.x R13

130.x.x.x R13

146.x.x.x R13

…

Classful addressing…

Route Aggregation

AT&T
220.128.0.0/9

UCB
220.232.128.0/1

8

UCM
220.232.244.0/1

9

Orange, SA
(France)

R13 R42

R42’s Table

Dst Nxt

220.128.0.0/9 R13

220.232.128.0/18 R13

220.232.244.0/19 R13

…

CIDR addressing…
Allows us to aggregate routes

Longest Prefix Matching

AT&T
220.128.0.0/9

UCB
220.232.128.0/1

8

UCM
220.232.244.0/1

9

Orange, SA
(France)

R13 R42

R42’s Table

Dst Nxt

220.128.0.0/9 R13

220.232.128.0/18 R13

220.232.244.0/19 R91

…
R91

Was 32 bits enough?

https://ipv4.potaroo.net/

Was 32 bits enough?

https://ipv4.potaroo.net/

��
��

IP version 6

What happened to version 5?

IPv6

● Fundamentally uses the same addressing structure as IP version 4.

● But with 128-bits of address space.
○ And some new requirements and rules…
○ Not relevant to our discussion.

● Went from 2^32 to 2^128 addresses.

IPv6

2^128 = 3.402823669209385e+38
addresses available.

IPv6

● Switches to hexadecimal representation rather than longer dotted address.

● 2001:0DB8:CAFE:BEEF:DEAD:1234:5678:9012
● 2001:0DB8:0000:0000:0000:0000:0000:0001

● Can omit leading zeros: 2001:DB8:0:0:0:0:0:1
● Can omit repeated zeros once per address: 2001:DB8::1

IPv6

● Still uses slash notation.

● 128-bits fixed == /128.
● 32-bits fixed == /32.

IPv6

● Some changes!

● We leave the last 64-bits of the address variable to allow for hosts to
configure their own addresses.

○ StateLess Address AutoConfiguration (SLAAC).

● This means practically, we don’t expect to see routes with /64 or longer
(greater).

○ Although in special cases we might.

IPv6

● The same hierarchical addressing approach is used in IPv6 and IPv4.

● We tend to use IPv4 for examples.
○ Because long strings of numbers are harder to remember.

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

Adoption generally correlated with areas where there are many
Internet users.

Challenges for IPv6 Adoption

● No smooth path
○ Hosts and ISPs need both addresses.

● Rebuilding the Internet.
○ Partial coverage where only some things are on IPv6.

● Coexistence.
○ If something is on IPv4 and IPv6 which should I use?

● Main driver for IPv6 adoption
○ We’re running out of IPv4 addresses!

Recap

● Hosts on the Internet have addresses – either IPv4 or IPv6 or both.

● These addresses are hierarchical.
○ They are assigned in groups to specific organisations.

● Wildcard matching means that this can help our forwarding and routing
scalability.

○ We’ll talk about this more next time!

