
CS168 Spring 2024 Project 3 – Transport
Due: April 21, 2024 11:59 PM

Contents

1 Introduction 3

2 Background 3

2.1 Sockets . 3

2.2 TCP . 3

3 Before You Start 5

3.1 Getting Skeleton Code . 5

3.2 The POX Simulation Environment . 5

3.3 Trying out POX . 5

3.4 Testing . 5

3.5 Debugging . 6

3.5.1 Programmatic . 6

3.5.2 Tracing Packets: POXDesk . 6

3.5.3 Tracing Packets: Other Network Analyzer . 7

3.6 Requirements . 7

4 Getting Familiar 8

4.1 Methods in skeleton code . 8

5 Sequence spaces and segments 9

5.1 Sending data . 9

5.2 Receiving data . 10

5.3 Segments . 11

6 Stages 11

6.1 Three-way handshake . 11

6.2 Receiving In Order Data . 12

CS 168 Spring 2024 – Project 3 2/ 21

6.3 Receiving Out of Order Data . 13

6.4 Simple Sending of Data . 13

6.5 Honor Advertised Window . 14

6.6 Passive Close . 15

6.7 Active Close . 16

6.8 Send retransmission . 16

6.9 RTO Update & RTT Estimation . 17

7 Grading 19

7.1 Test Details . 19

7.1.1 Stage 1 . 19

7.1.2 Stage 2 . 19

7.1.3 Stage 3 . 20

7.1.4 Stage 4 . 20

7.1.5 Stage 5 . 20

7.1.6 Stage 6 . 20

7.1.7 Stage 7 . 21

7.1.8 Stage 8 . 21

7.1.9 Stage 9 . 21

CS 168 Spring 2024 – Project 3 3/ 21

1 Introduction
The goal of this project is to implement a Socket that implements a TCP protocol similar to those you
can find in the Internet. A socket is an abstraction between the application layer and the transport layer
that allows an application to easily use the underlying transport protocol (TCP in this case). While sockets
are usually implemented by the operating system, your socket will be a user space implementation written
in Python. We will provide a network simulator and a Python TCP/IP stack, minus parts that you must
implement (which is the core of the actual TCP protocol). In this project, you won’t be implementing
applications that use this Socket. Instead, you will be implementing core parts of the protocol, and the
tests we provide will act as applications. These applications will use the Socket class you write and expect
the behavior defined in this specification.

2 Background

2.1 Sockets
It would be difficult for application developers to think in terms of packets. Following the trend of using
abstractions when dealing with complexity, it is much easier to use a logical pipe that connects a sender
and a receiver. In such an abstraction, a sender calls a function to send data without having to worry about
the details of how that message is actually sent and delivered. This abstraction is called a Socket and is
controlled by its API.

Sockets abstract away establishing a connection, and sending and receiving data. Further, a TCP socket
provides reliable, ordered, and error-checked delivery of a stream of bytes. Usually, each connection is
composed of two sockets: the local socket, and the remote socket. For example, the local socket might
be created and utilized by your web browser, and the remote socket could be created and managed by a
web server. In typical usage, one socket actively connects (this would be your web browser), and the other
passively connects (this would be the web server). In a typical scenario, the server creates a socket and
then calls bind and listen functions to create a socket waiting for a connection. Clients can establish
TCP connections to the server by calling connect, which the server can accept. Underlying this sequence
of function calls is the TCP 3-way handshake you have learned about in lecture. Once the connection is
established, either side can send data with send and the other side can receive data with recv.

2.2 TCP
TCP (Transmission Control Protocol) is a Layer 4 protocol that provides a byte stream abstraction. You
can review the details of TCP protocol using the corresponding lectures.

A connection can progress through a series of states during its lifetime. The possible states are listed in
the diagram below. For this project you only need to implement a subset of TCP for the client and not
the server. You will not have to implement the LISTEN or SYN RECEIVED state transitions, and you’ll be
given a large fraction of the rest of state transitions. The entire state transition diagram is detailed below
for reference. Further, the TCP stack you will implement will only support the ACK, SYN and FIN control
bits.

Finally, we will also not implement congestion control.

CS 168 Spring 2024 – Project 3 4/ 21

CS 168 Spring 2024 – Project 3 5/ 21

3 Before You Start
This project requires Python 3.7. Please make sure you have that installed. Other versions will not work.
Also, Windows is not supported, please use Linux or Mac for development.

3.1 Getting Skeleton Code
Follow the instructions on Ed to generate your own private repository of the starter code.

You should end up with a directory at proj_transport/pox/ext/cs168p2, where you can find
student_socket.py, the main file you’ll be working on. All commands in this spec (unless stated otherwise)
assume cs168p2 is your current directory.

3.2 The POX Simulation Environment
POX is a networking software platform written in Python. We will be using POX to create virtual end hosts
and routers in a simulated network.

3.3 Trying out POX
After cloning the repos, we can now try out a test to make sure that everything has been installed and set
up correctly. From the top level pox directory, try the following command to run POX using a configuration
file that just checks that things seem to be working. For all commands included in this document, replace
"python" with your executable name for Python 3 (e.g. python3, python3.7) if necessary.

$ python pox.py config=ext/cs168p2/tests/sanity_test.cfg

And you should see the following message if everything is correct:

$[test] [00:00:02] All checks passed, test PASSED

3.4 Testing
To help you check your work, we provide you with unit tests. These tests will be the only tests that we’ll
use to grade your submission, i.e., there will be no hidden tests (see Section 7 for details on grading).

The tests are run on the following network topology,

where your socket runs as c1 and the staff socket runs as s1. Links L1 and L3 have infinite bandwidth and
zero propagation delay. The specifications for link L2 are controlled by the tests, with variable specifications
depending on the test.

CS 168 Spring 2024 – Project 3 6/ 21

The tests are grouped to correspond with the stages of the project, and each test one aspect of the
implementation as independently as possible. As you work on each stage, you should run the unit tests for
that stage (and all previous stages) and make sure you pass them. For example, after you finish Stage 5,
you can run unit tests by invoking:

$ cd ext/cs168p2
$ python autograder.py s5 # Runs the unit tests for Stage 5
$ python autograder.py all # Runs all unit tests
$ python autograder.py all 5 # Runs all unit tests up to and including stage 5

While you are working on a particular stage (or a bug!), you may also want to run particular tests, and
you may want to read the code of the test that’s failing to see exactly what it’s doing. Each test is run by
invoking POX with a particular configuration file. Most of these then load up a specific Python module.
See the tests directory for a list of them. In general, you can invoke a particular test by doing something
like the following:

$ cd ext/cs168p2
$ python autograder.py s5_t1

This will also show you the test console output.

Note: The unit tests are not guaranteed to be comprehensive—it is possible for your implementation to
have a defect in one stage that manifests itself by failing unit tests for a later stage.

3.5 Debugging
We identify two different ways to debug your code. One is to trace the packets between components in the
network (see diagram in 3.5), and the other one is to use a more programmatic approach.

3.5.1 Programmatic
You can use self.log to print debug messages; e.g. self.log.error(string) anywhere within the StudentUSocket
class. You can also set breakpoints with pdb in your python code; e.g. "import pdb; pdb.set_trace()"
wherever you want to set a breakpoint. If you’ve never used pdb you can read about it here. However,
if you wish to use pdb you’ll need to run the test without the autograder. Example: if you want to set
breakpoints in your code and run test s1_t1, you’ll need to do the following from the root pox directory:

$ python pox.py config=ext/cs168p2/tests/s1_t1.cfg

When you execute tests this way, you might see logs starting with the string "tcp_sockets". This are logs
coming from the server code. Logs coming from your code will begin with "student_socket". Important
note: remove all breakpoints from your code before turning it in. You’ll only be given points for tests that
pass in the autograder without timing out, so if a test pauses because it hit a breakpoint in your code,
you’ll lose those points.

3.5.2 Tracing Packets: POXDesk
POXDesk, an extensible web-based GUI for POX, can be used to trace packets. To set it up, we have
provided a script for installing Qooxdoo. Run the script from the ext directory (under root pox directory):

https://docs.python.org/2/library/pdb.html#debugger-commands

CS 168 Spring 2024 – Project 3 7/ 21

$./get_Qooxdoo.sh

After setting it up, to activate POXDesk, add ’config=ext/gui/gui.cfg’ in the previous command, and run
it from the root pox directory:

$ python pox.py config=ext/cs168p2/tests/s1_t1.cfg config=ext/gui/gui.cfg

This test will halt until you visit http://127.0.0.1:8000/poxdesk/, which starts the testing process and
shows packet traces in a table.

3.5.3 Tracing Packets: Other Network Analyzer
Alternatively, every time a test is run, the command line output will specify a location for a pcap file (under
trace directory by default). POX can produce pcap (packet capture) files that allows you to use a network
analyzer such as WireShark. The pcap is automatically captured by Pox and written to the trace directory.
To debug, download WireShark, go to the File menu, and Open the pcap file. Note: you’ll see sequence
numbers always starting at 0 on WireShark. This is because the tool shows relative numbers (deltas) with
respect to the initial sequence number.

3.6 Requirements
Before we get started with the implementation, let’s lay down some ground rules:

• Your TCP Socket implementation must live entirely in ext/cs168p2/student_socket.py; no other
files will be considered or usable during grading (so you may, for example, write additional test cases,
but correct operation of your socket code must not rely on anything not in the student_socket.py
file).

• You should not touch the POX code itself. Nor should you write code that dynamically modifies
POX, the simulator, or the tests. Additionally, don’t override any of the methods which aren’t clearly
intended to be overridden, and don’t alter any “constants.” You will receive zero credit for turning in
a solution that modifies the simulator itself or otherwise subverts the assignment. If you’re not sure
about something: ask.

• Your TCP Socket instances should communicate with other TCP Socket instances only via the
sending of packets. Global variables, class variables, calling methods on other instances, etc., are not
allowed—each TCP Socket instance should be entirely standalone!

• The skeleton code we provide for TCP Socket will already have several instance variables defined
for the class. Do not modify or remove these definitions; you’ll be using them during the project.
Similarly, do not remove any existing method definitions; you’ll be filling in their implementations.

• However, feel free to add your own instance variables and/or helper methods, as long as they don’t
break the provided tests.

• You should not need any additional import statements. It would be fine for you to use, say, Python’s
collections module. However, you should not use (or need to use!) the time, threading, or socket
modules. If you have questions, ask!

http://127.0.0.1:8000/poxdesk/
https://www.wireshark.org

CS 168 Spring 2024 – Project 3 8/ 21

4 Getting Familiar
The most common way in which programs interact with the networking capabilities of operating systems
is via the Berkeley sockets API, invented right here at Berkeley. Applications call the socket API functions
in order to manage connections and to communicate.

All the code you write will be inside the StudentUSocket class. This is a subclass of StudentUSocketBase
that contains the interface to POX and a number of things which you shouldn’t really need to worry about
for this project. You’ll be writing up code in StudentUSocket to implement the rest of TCP.

4.1 Methods in skeleton code
All methods in the skeleton code you are provided have docstrings, but we summarize all of them here for
easier reference later in this specification.

class RXControlBlock (object)
nxt = 0 # next expected receive sequence number
wnd = 0 # receive window

class TXControlBlock (object)
una = 0 # oldest unacknowledged sequence number
nxt = 0 # next send sequence number to use
wnd = 0 # send window
wl1 = 0 # seg sequence num used for last window update
wl2 = 0 # seg ack num used for last window update)
iss = 0 # initial send sequence number

class FinControl (object)
def acks_our_fin (self, ack)
def set_pending (self, next_state=None)
def try_send (self)

class RetxQueue(object)
def push (self, p)
def pop (self)
def pop_upto (self, seq_no)
def get_earliest_pkt (self)
def empty (self)
def peek (self)

class RecvQueue(RetxQueue)
def push (self, p)

class StudentUSocket(object)
def _do_timers (self)
def new_packet (self, ack=True, data=None, syn=False)
def close (self)
def acceptable_seg (self, seg, payload)
def connect (self, ip, port)
def tx (self, p, retxed=False)
def rx (self, packet)

CS 168 Spring 2024 – Project 3 9/ 21

def handle_synsent (self, seg)
def update_rto (self, acked_pkt)
def handle_accepted_payload (self, payload)
def update_window (self, seg)
def handle_accepted_ack (self, ack)
def check_ack (self, seg)
def handle_accepted_seg (self, seg, payload)
def maybe_send (self)
def start_timer_timewait (self)
def check_timer_timewait (self)
def check_timer_retx (self)
def set_pending_ack (self)
def maybe_send_pending_ack (self)

5 Sequence spaces and segments
Before we go on and talk about the project stages, we need to talk about the different kinds of sequences
spaces that TCP uses. Since you’ll be implementing the protocol itself, we will have to go into significant
detail here.

Each host in TCP needs to maintain a send sequence space and a receive sequence space. In this project,
the TXControlBlock is the data structure that keeps the send sequence space and is instantiated for you in
self.snd. RXControlBlock keeps the receive sequence space and is instantiated in self.rcv. 1 sequence space
usually corresponds to 1 octet, or 1 byte of payload, but some packets occupy sequence space even though
they don’t carry any payload; more on this later.

Whenever you perform arithmetic operations on send or receive sequence space variables, use the operators
defined in modulo_math.py. Examples of using operators are shown below.

A = A |PLUS| 1 # A = A + 1
C = A |MINUS| B # C = A - B
(A |EQ| B) == True # (A == B) == True
(A |NE| B) == True # (A != B) == True
(A |GT| B) == True # (A > B) == True
(A |GE| B) == True # (A >= B) == True
(A |LT| B) == True # (A < B) == True
(A |LE| B) == True # (A <= B) == True

5.1 Sending data

CS 168 Spring 2024 – Project 3 10/ 21

Send Sequence Space
1 2 3 4

----------|----------|----------|----------
SND.UNA SND.NXT SND.UNA

+SND.WND

1 - old sequence numbers which have been acknowledged
2 - sequence numbers of unacknowledged data
3 - sequence numbers allowed for new data transmission
4 - future sequence numbers which are not yet allowed

Within the diagram, the definitions of each label are:

• SND.UNA: the oldest unacknowledged sequence number

• SND.NXT: the next sequence number to be sent

• SND.WND: the current send window (the receive window of the peer)

Therefore, when we send segments that are valid and occupy sequence space, we must increment SND.NXT.
FINs and SYNs occupy 1 sequence space and segments with payload occupy size of payload sequence
space. Furthermore, when the peer acknowledges new segments we have sent, we move SND.UNA to the
right to match the segment ack number. Finally, every segment we receive comes with a window field (the
window advertisement) which is the maximum buffer size that we can send to the peer (including packets
in flight).

5.2 Receiving data
Receive Sequence Space

1 2 3
----------|----------|----------

RCV.NXT RCV.NXT
+RCV.WND

1 - old sequence numbers which have been acknowledged
2 - sequence numbers allowed for new reception
3 - future sequence numbers which are not yet allowed

Within the diagram, the definitions of the labels are:

• RCV.NXT: next sequence number expected on an incoming segments, and is the left or lower edge
of the receive window

• RCV.WND: the current size of our receive window

Therefore, when we receive segments they are stored starting at RCV.NXT, and up to RCV.WND bytes.

CS 168 Spring 2024 – Project 3 11/ 21

5.3 Segments
We refer to segments as any TCP packet that we send or receive. Segments are usually encapsulated in
IP packets, and this project is no exception as POX deals with IP packets, not TCP segments. If at any
point the documentation says that p is an IP packet, you can get its TCP segment by doing p.tcp. In this
project, each TCP segment contains the following fields:

seg.seq - segment sequence number
seg.ack - segment acknowledgment number
seg.win - segment window advertised
seg.ACK - whether this segment has the ACK flag set
seg.SYN - whether this segment has the SYN flag set
seg.FIN - whether this segment has the FIN flag set

To get the length or size of a TCP segment’s payload, you can use len(seg.payload). The function
new_packet() creates new IP packets for us so we can transmit them, and it sets the TCP segment’s
sequence number equal to self.snd.nxt and the ack number to self.rcv.nxt.

6 Stages
To guide your implementation, we have split the implementation process into nine stages, each of which
covers one aspect of the project. Some of these are split into sub-stages. You should follow along stage by
stage, and by the end, you will have implemented a functional version of TCP, similar to what you find in
the Internet!

6.1 Three-way handshake

During the three-way handshake, the TCP socket will transition between a set of states as shown in the
diagram. The internal state of the socket is kept in self.state.

In this project, you do not need to implement a client that can respond to a separate SYN and ACK
packets. You can assume that the server will respond with a single SYNACK packet.

CS 168 Spring 2024 – Project 3 12/ 21

1. Begin by taking a look the the connect() function. This function is called by the the application and
should start the procedure by sending the initial SYN packet. Build a new packet with the correct
flags and sequence number and change the connection state. Hint: The send() and maybe_send()
functions do additional processing we don’t need here. Use the raw tx() function.

2. The SYNACK the client receives should be handled by the handle_synsent() function. All packet
receives are handled in rx() – modify the function rx() so that if the current state is SYN_SENT, it
calls handle_synsent() with the new segment.

3. In handle_synsent(), if the ACK for the SYN is acceptable (this code is given to you), update the
send sequence space variables to the appropriate values. Hint: Any time you operate in sequence
space, you want to use modulo operators, check out modulo_math.py, which performs arithmetic
operations assuming 32-bit unsigned integers that can wrap around.

4. Still in handle_synsent(), if use the new oldest unacknowledged sequence number to determine if
this ACK is acking our SYN. If so, change the state accordingly and express that we want to send
an ACK (see set_pending_ack()). We don’t directly send the ACK because we want to send as few
packets as possible, so we try to merge ACKs and combine ACKs with data. Once there is a pending
ack, rx() will take care of the actual sending. As we will see in more detail in a later stage, every
segment we receive advertises a send window, and this ACK is no exception, so make sure to also
call update_window().

At this point your socket should be able to do the 3 way handshake correctly. You can now run Stage 1
tests.

6.2 Receiving In Order Data
In this stage you’ll add support for in-order data arrival to the client. Received in-order data should be stored
in rx_data. Consider the scenario where you are receiving 3 packets with payloads that don’t overlap: p1,
p2, p3. If all of these packets arrive, and they do so in order, then your implementation should simply copy
p1, p2, p3 to rx_data and you are done. However, if we assume p2 is lost, then your client will receive
and store p1, and then it will receive p3. At this point, you can’t store p3 in rx_data, as you would be
corrupting your receive buffer (you don’t know how large p2 could be!). Instead, for now, you’ll need to
drop p3 and send an ack back to the server requesting p2.

You will implement the functions handle_accepted_seg() and handle_accepted_payload(). handle_accepted_seg()
is called by rx() after a segment has been validated by acceptable_seg() to be within the receive window;
these are some tricky checks, but we provide this code for you.

1. Begin by modifying rx(). If the segment is acceptable, call handle_accepted_seg() on the segment.
However, you should only do this if the segment is in-order, i.e., it is the next segment you are
expecting. If you receive an out-of-order packet, set a pending ack and drop the packet here (but
allow the rest of rx() to execute).

CS 168 Spring 2024 – Project 3 13/ 21

2. TCP can only process the payload if the state is one of ESTABLISHED, FIN_WAIT_1, or FIN_WAIT_2,
and if the length of the payload is non-zero. Implement this functionality in handle_accepted_seg().
If both conditions are true, call handle_accepted_payload() on the payload.

3. In handle_accepted_payload(), increment the next expected byte, update the receive window size
accordingly, and add the payload to rx_data. Finally set a pending ACK.

6.3 Receiving Out of Order Data
In the previous stage we dropped packets that were out of order, while acking the segment we were waiting
for. In this stage we will improve on this by temporarily keeping any out-of-order segments until we can
process them in-order. For example, if we are supposed to receive packets p1, p2, p3, but p2 is lost, we
would only get p1 and then p3. Instead of dropping p3 (as done in the previous stage), we can store it in
a receive queue and send an ack requesting p2. For the receive queue, we use rx_queue, an object of type
RecvQueue. When p2 arrives, we process it (by calling handle_accepted_seg() on it) and this allows us to
process p3 as well. Although we can temporarily store packets that arrive out of order, we must process
them in order.

A payload overlap can occur for various reasons, but it essentially means that you need to handle situations
where the payloads partially overlap across subsequent segments. If this happens, you need to remove some
octets from the beginning of one of the segment’s payload.

1. Back in rx(), we just called handle_accepted_seg() if the state was in one of many that allowed
incoming segments. Instead of doing that, simply insert the packet into the rx_queue—we will process
the queue in the next step.

2. The rx() function a good place to check if we can process any in-order segments from the receive
queue. Every time rx() is called, there is a chance that the next in-order segment is available for
processing in the queue.

(a) If the packet with the smallest sequence number from the queue indicates that the packet is out
of order, simply set a pending ack and allow the rest of rx() to execute.

(b) Otherwise, pop that packet from the queue, extract the payload (or a subset of the payload in
case of an overlap) and call handle_accepted_seg() on it.

(c) Continue (a), (b) until all in-order packets in the queue are handled.

Hint: There are useful functions that the queue object offers!
Hint: The receive sequence space variables contain useful information for determining if the payload
has an overlap!

6.4 Simple Sending of Data
Now that we can set up a connection and receive data, the next step is to implement the ability to send data
and react to ACKs. When sending data, ACKs from the peer tells us what they have successfully received

CS 168 Spring 2024 – Project 3 14/ 21

so far. Applications call the socket function send() with data, and the function fills the transmit buffer
(tx_data) with the data. The function maybe_send() is called by send() and by rx() and is responsible for
sending the appropriate amount of data.

1. First, we will add code to maintain our send sequence space; among other things, this will tell us
what the peer has received so far. In check_ack() add code to implement the following checks and
actions:

(a) If the ack number of the received segment represents a sent but unacked packet, call han-
dle_accepted_ack() on the segment. Hint: See the diagram in 5.1

(b) Otherwise, if it is an old ACK, drop the packet, that is, don’t allow the rest of handle_accepted_seg()
to execute. However, do allow the rest of check_ack() to execute.

(c) Otherwise, if the ack has a sequence number that you haven’t sent, then set a pending ack and
drop the packet; don’t allow the rest of check_ack() and handle_accepted_seg() to execute.

2. Now implement handle_accepted_ack(). For this stage, we only handle in-order ACKs for data that
we have sent, therefore, all you have to do for now is update the variable that keeps track of
unacknowledged sequence numbers so far.

3. Now that we have the ability to handle ACKs for data we have sent, let’s implement support to
segmentize and send packets. The function maybe_send() is used to send as much of the transmit
buffer as possible, that is, you need to send data currently stored in tx_data. While doing so, you
need to maintain the following conditions:

(a) Trivial, but you can’t send more data than what tx_data has.
(b) In sum, you can’t send more data than what your send window allows, including packets in flight.
(c) While segmentizing tx_data, each segment needs to be equal or smaller in size than the max

segment size. This is provided for you in self.mss.

Transmit each segment using tx(). Also, make sure to update the transmit buffer as needed.

4. The last part is to actually transmit the data. Currently the function tx() hands off the packet to the
manager, which does the actual sending. Before handing off the packet, update the next sequence
number to be sent in your send sequence space for the case that you send a packet with payload.

6.5 Honor Advertised Window
Welcome to the shortest stage of this project. In the previous stage, you already implemented obeying the
send window when segmentizing data, but so far the value for self.snd.wnd was TX_MAX_DATA, which
is not correct. Every time a packet is received, the sender advertises the maximum window size it wants
the other side to use for sending.

1. Correctly assign the send window in update_window() to the value the segment advertises. Keep in
mind that we are not implementing congestion control.

CS 168 Spring 2024 – Project 3 15/ 21

6.6 Passive Close
We now turn to connection teardown. Broadly speaking, in TCP there are two graceful shutdown procedures:
active close and passive close. The difference lies in who initiates the close—the side that initiates it is
defined as the active closer, and the side that responds to the close, the passive closer.

In passive close, a FIN packet is received by our client, and we must respond with an ACK for the FIN and
enter CLOSE_WAIT. When an application calls close() in our client, we send a FIN. At this point we enter
LAST_ACK, where we stay until our FIN is ACKed.

1. When a FIN arrives, handle_accepted_seg() will call handle_accepted_fin(). Modify handle_accepted_fin()
to update the next sequence number expected in our receive sequence space. We also need to ACK
the FIN. Then we need to update our state, move to the appropriate state if the current state is
ESTABLISHED. Now the protocol will wait until the application in our host calls close()

2. In close(), do the following if the state is the one you moved to in the previous step. You need to
set a pending FIN, and we provide code for you to do that—use self.fin_ctrl. The function you’ll use
also receives a parameter to move to the next appropriate state when the FIN is actually sent, so be
sure to fill that out.

3. Finally, once we get the ACK for our FIN, we can close the connection without further waiting. In
check_ack(), add the following code if the state is the one you moved to in the previous step. Check
if the ACK we just received acks the FIN we sent (again, see FinControl). If so, we close the socket
by calling _delete_tcb().

CS 168 Spring 2024 – Project 3 16/ 21

6.7 Active Close

On active close, our host is the one that calls close() first, so we send initial FIN packet. Depending on
whether we get an ACK followed by a FIN, a FIN-ACK, or a FIN followed by an ACK, there are three paths
our state transition can follow, which is demonstrated in the above graph.

The state all the paths in active close want to reach is TIME_WAIT. Every time you want to transition
to this state, simply call start_timer_timewait(). This will start the TIME WAIT timer, and will move the
state to TIME_WAIT too, so you don’t have to do it manually.

1. The first step is to react accordingly when an application calls close(). In close(), if the current state
is ESTABLISHED, change the state accordingly, setting any necessary pending flags.

2. In handle_accepted_fin(), do the following if the state is FIN_WAIT_1:

(a) If we received a FIN-ACK, transition the state accordingly.
(b) If we received just a FIN, we should transition the state accordingly.

3. In check_ack(), transition states appropriately on receiving an ACK that acks the FIN we sent. This
path in the diagram is if we receive the ACK before the other side’s FIN.

4. In check_ack(), transition states appropriately on receiving an ACK in the CLOSING state. This path
completes the transition for simultaneous close.

5. We are almost done! In handle_accepted_fin(), implement the transition if we receive a FIN while
in FIN_WAIT_2 and you are done with connection teardown!

6.8 Send retransmission
In stage 4 we implemented simple in-order send of segments. However, we didn’t handle the case where
sent packets are lost. In this stage, we’ll handle sent drop packets by retransmitting them. Instead of an

CS 168 Spring 2024 – Project 3 17/ 21

actual timer with an interrupt, retransmits in this project work by tagging every packet with a timestamp
of the time at which they are originally transmitted. Before each packet is transmitted for the first time, it
is added to a retrasmit queue (see retx_queue and RetxQueue). Packets are removed from the retransmit
queue when they are ACKed. Every 100 milliseconds, the earliest packet (oldest) in the retransmit queue is
inspected to see if it has expired and if so, it is retransmitted. Only SYNs, FINs and segments with payload
are retransmitted–we don’t need to retransmit ACKs.

On this stage, the RTO is fixed to 1 second.

The Retransmit Timeout (RTO) is how long we should wait before a packet times out and needs to be
retransmitted, and is given by rto. On this stage, the RTO is fixed to 1 second.

1. Tag every IP packet that is being transmitted for the first time with the current simulation time
stamp. Hint: tx_ts and self.stack.now will be helpful.

2. Further, we tag each IP packet that has been retransmitted at least once with the retxed attribute.
So, we add a packet to the retransmit queue only if it is the first time that is being transmitted.

3. Now let’s fill out check_timer_retx() that checks the retransmit queue. Determine if the oldest packet
in the queue needs to be retransmitted, i.e., it has been in the queue at least rto time. Retransmit
it if so, retransmitting at most every time check_timer_retx() is called. Hint: RetxQueue has a
get_earliest_pkt method.

4. Now we have to remove packets from the retransmission queue when they are ACKed. Implement
this in handle_accepted_ack(). Hint: RetxQueue has a helpful method

6.9 RTO Update & RTT Estimation
In the previous stage, we assumed the RTO was fixed at 1 second. As we saw in class, we need to actually
update this value frequently to avoid sending duplicate packets on a high latency link. The RTT (Round
Trip Time) is defined as the difference between the time a packet was sent and the time at which its
ACK was received. We can compute this number by using the tx_ts attribute you set when transmitting a
packet in the previous stage. The RTT is used to properly determine the RTO and must be estimated by
measuring how long it took for a packet to be ACKed.

1. To begin, the RTO should be doubled every time there is a retransmitted packet. Implement this in
check_timer_retx() when the packet is retransmitted. The RTO should never exceed MAX_RTO.

2. We want to update the RTO whenever we get a new packet ACKed, but only if that packet is a
clean sample. In handle_accepted_ack(), for every packet ACKed by a new received ACK, if it is a
clean sample, call update_rto() on the packet.

3. update_rto() is called by handle_accepted_ack(), and takes an acked packet and updates self.rto
by re-estimating the RTT. The following attributes are already declared for you, and you must only
modify rto, srtt and rttvar; do not modify the others.

CS 168 Spring 2024 – Project 3 18/ 21

self.rto = 1 # retransmission timeout
self.srtt = 0 # smoothed round-trip time (estimated RTT)
self.rttvar = 0 # round-trip time variation (estimated Deviation)
self.alpha = 1.0/8
self.beta = 1.0/4
self.K = 4
self.G = 0 # clock granularity

The following sections from RFC 6298 will also be very helpful:

(2.2) When the first RTT measurement R is made, the host MUST set

SRTT <- R
RTTVAR <- R/2
RTO <- SRTT + max (G, K*RTTVAR)

(2.3) When a subsequent RTT measurement R' is made, a host MUST set

RTTVAR <- (1 - beta) * RTTVAR + beta * |SRTT - R'|
SRTT <- (1 - alpha) * SRTT + alpha * R'

The value of SRTT used in the update to RTTVAR is its value
before updating SRTT itself using the second assignment. That
is, updating RTTVAR and SRTT MUST be computed in the above
order.

The above SHOULD be computed using alpha=1/8 and beta=1/4 (as
suggested in [JK88]).

After the computation, a host MUST update
RTO <- SRTT + max (G, K*RTTVAR)

Finally, clamp the new RTO to self.MAX_RTO and self.MIN_RTO.

https://tools.ietf.org/html/rfc6298

CS 168 Spring 2024 – Project 3 19/ 21

7 Grading
Submission instructions will be posted on Ed before the deadline. Be sure to familiarize yourself with the
late policy outlined in the syllabus on the course website.

100% of your grade will come from the unit tests that we have provided to you. Each stage is worth an equal
amount. Any further details on grading will be posted on Ed. To submit, upload your student_socket.py
file to Gradescope.

You must solve this project individually. You may not share your code or show your code with anyone,
including any custom test code that you may write. You may discuss the assignment requirements or your
solutions—away from a computer and without sharing code—but you should not discuss the detailed nature
of your solution. Also, don’t put your code in a public repository.

We expect you all to uphold high academic integrity and pride in doing your own work. 23% of academic
misconduct cases at a certain junior university are in Computer Science.1 Let’s be better than this. If you get
stuck on the project, come to project office hours as early as possible. Assignments suspected of cheating
or forgery will be handled according to the Student Code of Conduct2.

7.1 Test Details
On all tests, we are the client, the peer is the server. All tests for a given stage assumes the previous

stage’s functionality is correct (except in stage 1).

7.1.1 Stage 1
1. 3 way handshake

(a) Packet 1 comes from client, has SYN flags only
(b) Packet 2 comes from server, has SYNACK flags, correct ack num, client state is SYN_SENT
(c) Packet 3 comes from client, has SYNACK flags, correct ack num, client state is ESTABLISHED

2. Same as previous one but the server’s initial sequence number is set at wraparound boundary.

7.1.2 Stage 2
1. Receive 1 packet with payload from server. Check theres only 1 packet with payload. Check correct

number of packets. Check sequence numbers. Check that received data is correct.

2. Same as test 1 but 3 packets with payload.

3. Same as test 1 but 50 packets with payload.

4. Same as test 1 but router drops the packet with payload once, client should request it (ack it) and
server should retransmit it.

1https://www.networkworld.com/article/2207189/why-computer-science-students-cheat.html
2http://students.berkeley.edu/uga/conduct.pdf

http://cs168.io/about.html
https://www.networkworld.com/article/2207189/why-computer-science-students-cheat.html
http://students.berkeley.edu/uga/conduct.pdf

CS 168 Spring 2024 – Project 3 20/ 21

5. Same as test 4 but receive 3 packets. Router will drop interleaved packets with payload (drop 1st,
let 2nd pass, drop 3rd, etc.) Each packet is dropped once tops so retransmissions are not dropped.

6. Same as test 5 but receive 15 packets.

7.1.3 Stage 3
1. Receive 1 packet with payload from server. Check data is correctly received. Drop the packet once

and then allow it to pass only once. So one successful transmission should be enough for client to
get the packet.

2. Same as 1 but receive 3 packets and allow them to pass in an interleaved fashion. Each packet is
allowed to pass once tops.

3. Same as 2 but receive 15 packets.

4. Same as 2 but set server’s initial sequence number close to wrap around boundary.

5. Same as 3 but set server’s initial sequence number close to wrap around boundary.

7.1.4 Stage 4
1. Client sends 1 packet to server, check the server receives all data correctly.

2. Same as 1, but send 3 packets.

3. Same as 1, but send 50 packet.

4. Same as 2, but set server’s initial sequence number close to wrap around boundary.

5. Same as 3, but set server’s initial sequence number close to wrap around boundary.

7.1.5 Stage 5
1. Set the server’s receive window to 1 byte. Client sends 300 bytes, must send 300 packets.

2. Set the server’s receive window to 199 bytes. Client sends 1990 bytes, must send 10 packets.

7.1.6 Stage 6
1. Test 3 way handshake. 4th packet is FIN+ACK from server. 5th packet ACK from client. 6th packet

FIN+ACK from client. 7th packet ACK from server. Client transitions correctly on passive close
states.

2. Test 1 plus set server’s initial sequence number close to wrap around boundary.

CS 168 Spring 2024 – Project 3 21/ 21

7.1.7 Stage 7
1. Active close, close connection from client side. Client must send FIN, receives ACK then FIN+ACK,

sends ACK. Their state transition is ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, TIME_WAIT.
The time-wait timer should go off and they should end in CLOSE state.

2. close() after send(). While data is still in the transmit buffer, client calls close(). Should wait until
after all data is sent before sending the FIN.

7.1.8 Stage 8
1. Client sends data. Drop acks from server that correspond to the beginning of the payload, but allow

acks that correspond to the end of the payload to reach the client. Client should not retransmit
packets.

2. Client sends one packet. The packet is dropped once. Client should retransmit it after 1 second.

3. Client sends 10 packets of data. Drop interleaved packets but each one is dropped once tops. Client
should retransmit dropped packets.

7.1.9 Stage 9
1. Client sends 100 packets, one packet every 25 ms. R1-R2 link latency is set to 200ms. By the end,

SRTT should be within +-10% of the RTT. All data should reach server.

2. Test 1 but set link latency to 500ms. SRTT should be within +-5% of the RTT.

3. Test 1 but drop ≈4% of the packets going to server. By end, RTO must be less than 32, SRTT less
than 16, and RTTVAR more than 1.5.

	Introduction
	Background
	Sockets
	TCP

	Before You Start
	Getting Skeleton Code
	The POX Simulation Environment
	Trying out POX
	Testing
	Debugging
	Programmatic
	Tracing Packets: POXDesk
	Tracing Packets: Other Network Analyzer

	Requirements

	Getting Familiar
	Methods in skeleton code

	Sequence spaces and segments
	Sending data
	Receiving data
	Segments

	Stages
	Three-way handshake
	Receiving In Order Data
	Receiving Out of Order Data
	Simple Sending of Data
	Honor Advertised Window
	Passive Close
	Active Close
	Send retransmission
	RTO Update & RTT Estimation

	Grading
	Test Details
	Stage 1
	Stage 2
	Stage 3
	Stage 4
	Stage 5
	Stage 6
	Stage 7
	Stage 8
	Stage 9

