CS168
Introduction to the Internet: Architecture and Protocols

Sylvia Ratnasamy and Rob Shakir
Spring 2024
Today

• Introductions

• What is (this course on) the Internet about?

• Class logistics
Instructor: Rob Shakir

• Background
 • Got into networking via a startup he founded in 2003
 • Learnt a lot through "just doing it”
 • Tech lead for multiple global networks, including British Telecom
 • Moved to the US to join Google and now a lead architect and engineer working on Google’s global WAN network
Instructor: Sylvia Ratnasamy

• **Background**
 • PhD from UC Berkeley
 • Worked at Intel Research for ~10 years
 • Joined the UCB faculty in 2011
 • Co-founded a startup in 2016; spent 2021-22 at Google
 • Networking has been my focus throughout

• **My teaching style**
 • I’m a much better teacher when you engage with my questions!!
 • I talk too fast -- the more bored you look, the faster I talk!
Head TAs (see cs168.io for office hours and sections)

• Sarah McClure

• Efsane Soyer
Class TAs (see cs168.io for office hours and sections)

- Tess Despres
- Abhi Ganesh
- Ethan Jackson
- Bryce Wong
Today

• Introductions

• What is (this course on) the Internet about?

• Class logistics
• Internet
• Protocols
• Architecture
Two Meanings of “Internet”

• The infrastructure that ties together computing devices
 • TCP, IP, BGP, DNS, OSPF, ...

• The ecosystem of applications built on top of the above infrastructure
 • amazon, facebook, google, twitter,

• In this class, we use the first definition!
The Internet transfers data between end hosts
• Internet

• Protocols

• Architecture
Facebook server

World of Warcraft server

Instant messaging

World of Warcraft client

Safari accessing Facebook
while (...) {
 message = ...;
 send (message, ...);
}

while (...) {
 message = receive(...);
}
Alice

Bob

hello

hello

give me http://cs.berkeley.edu

here: ...
Protocol

• A specification of the messages that communicating entities exchange
 - their syntax and semantics

• Very much like conversational conventions ... determining who should talk next and how they should respond

• Designing a good protocol is harder than it first seems!
• Internet

• Protocols

• Architecture
Why study the Internet?
The Internet has and is transforming everything

- The way we do business ...
 - retail, advertising, cloud computing

- The way we have relationships
 - Twitter, chat

- The way we learn
 - Wikipedia, ChatGPT, AR/VR

- The way we govern
 - E-voting, censorship, cyber-warfare

- The way we cure disease
 - digital health, remote surgery
What’s your formal model for the Internet? -- theorists

Aren’t you just writing software for networks? – OS community

You don’t have performance benchmarks??? – hardware folks

But why is the Internet *interesting*?

What’s with all these TLA protocols?– everyone

But the Internet seems to be working now ... – my parents
A few defining characteristics of the Internet...
Network versus “The Internet”

- There are many kinds of network technologies (switches and links)
 - Ethernet, optical, wifi access points, DSL modems, Infiniband switches, ...

- The Internet is not a new/particular kind of network technology

- Instead, the Internet ties different networks together
 - The Internet
A federated system

Interoperability is the Internet’s most important goal!

The Internet interconnects over 100,000 independently operated networks
A federated system

• Fundamental challenge: how do you interconnect competing entities?
 • Competing network providers must cooperate to serve their customers!

• Leads to a constant tussle between business and technical factors
 • Real-world incentives determine topology, path selection, diagnostics, and more

• And complicates innovation
 • How do you differentiate when interoperability relies on supporting a common protocol?
 • Upgrading “the Internet” is not an option
Tremendous scale

• >5 Billion users (51% of world population)

• 1.24 Trillion unique URLs (web pages)

• Every second, we generate >6000 tweets, >60,000 Google queries, >3M emails

The phrase “Internet scale” is now used refer to such systems
Enormous diversity and dynamic range

- **Technology**: optical, wireless, satellite, copper, ...
- **Communication latency**: microseconds to seconds (10^6)
- **Bandwidth**: 1Kbits/second to 1 Terabit/second (10^8)
- **Packet loss**: 0 – 90%
- **Endpoint devices**: sensors, cell phones, datacenters, ...
- **Applications**: skype, live video, gaming, remote medicine, ...
- **Users**: the governing, governed, operators, selfish, malicious, ...
Asynchronous Operation

- Fundamental constraint: speed of light

- Consider: how many cycles does your 3GHz CPU in Berkeley execute before it can possibly get a response for a message it sends to a server in NY?
 - Berkeley to New York: 4,125 km
 - Traveling to NY and back at 300,000 km/s: 27.5 milliseconds
 - $3,000,000,000$ cycles/sec * 0.0275 = $84,000,000$ cycles!

- Thus, communication feedback is always dated
Prone to Failure

• Many components along a path
 • software, switches, links, network interface cards, wireless access points, modem,...

• Consider: 50 components, that work correctly 99% of time → 39.5% chance communication fail
 • Plus asynchrony → takes a long time to hear (bad) news

Handling failure at scale was dealt with for the first time in the context of the Internet!
Constant evolution

1970s:
• 10^4 bits/second links
• < 100 computers in the US
• Copying files is the “killer” app

Today
• 10^{14} bits/second links
• 10B+ devices, all over the globe
• 3B+ facebook users; self-driving cars

Cannot design for a fixed target!
Recap: The Internet is ...

- A federated system ...
- of enormous scale ...
- with tremendous dynamic range and diversity ...
- that is asynchronous in operation ...
- failure prone ...
- and constantly evolving
Recap: The Internet is ...

- Too complex for theoretical models
- “Working code” needn’t mean much
- Performance benchmarks are too narrow

The creation of the Internet required a new design paradigm
(One that changed computer science!)
The Internet design paradigm

• Decentralized control
• A best-effort service model
• “Route around trouble”
• Dumb infrastructure (w/ smart endhosts)
• The end-to-end design principle
• Layering
• Federation via a “narrow waist” interface

A radical departure from systems at the time
Example: a best-effort service model

• Fundamental question: what’s the right service model that a network should support?
 • “contract” between network and its users/end-hosts

• Some possibilities:
 • “guarantee that data will be delivered”
 • “guarantee that data will be delivered within X time”
 • “return a confirmation of successful delivery or an error”

• Instead, what the Internet supports: “best effort” delivery of data
 • No guarantee on whether or when data will be delivered
 • No notification of outcome!
The Internet design paradigm

- Decentralized control
- A best-effort service model
- “Route around trouble”
- Dumb infrastructure (w/ smart endpoints)
- The end-to-end design principle
- Layering
- Federation via a “narrow waist” interface

A radical departure from systems at the time
Now routinely adopted in modern systems (e.g., cloud services)
The Internet design paradigm

- Decentralized control → SDN: centralize? → dSDN: (re)decentralize?
- A best-effort service model → “quality of service” guarantees?
- “Route around trouble”
- Dumb infrastructure (w/ smart endpoints) → in-network attack detection?
- The end-to-end design principle → Edge computing?
- Layering → cross-layer coding
- Federation via a “narrow waist” interface

But it is just one design ...

... and we’re still debating the big questions
Backing up a level

- The Internet poses a design challenge like no other
- From its creation emerged a new design paradigm
- That shaped how we reason about the design of complex systems
 - What’s the right prioritization of goals?
 - What are fundamental constraints?
 - How do we decompose a problem?
 - What abstractions do we need?
 - What are the tradeoffs?
- In short, a lesson in how to architect a (networked) system
• Internet
• Protocols
• Architecture
Network architecture

• More about thinking rigorously than doing rigorous math
• More about understanding tradeoffs than running benchmarks
• More about practicality than optimality

Done right, can be a powerful thing
What (I hope) CS 168 will teach you

• How the Internet works

• Why it works the way it does

• How to reason through a complex (networking) design problem
Today

• What is (this course on) the Internet about?

[quick break]

• Class logistics
Enrollment and wait list

• Class size will not increase

• Wait-listed students will be admitted as and when registered students drop the class
 • Course staff do not process the waitlist!
 • If you’re planning to drop, please do so soon!

• Concurrent enrollment students will be admitted after the wait list is processed
Lectures and participation

• Attendance is required and 5% of your grade (see website for details)
 • Will have occasional in-class quizzes
 • For full credit you must answer >20% of questions correctly on >50% of quizzes; no partial credit

• Ask and answer questions!
 • It helps you understand
 • It helps others understand
 • It helps you stay awake
 • It helps me stay awake
 • It’s just more fun for all of us ...

• Do sit towards the front and limit electronic access and **BE QUIET!!**
Lecture slides and recordings

• Lecture slides will be available on the class website a few minutes before lecture

• Lectures will be recorded and posted online with a ~one week delay

• Section will cover material from the previous week’s lectures; we will release a video covering section on the day of
Class workload

1. Attendance and in-class quizzes

2. Three projects (see website for deadlines, late policy, etc.)
 - Project#1: routing
 - Project#2: implement “traceroute”
 - Project#3: implement a reliability protocol
 - No partners

3. One homework based on a research paper we’ll read

4. Exams: midterm and final
Grading

- Will grade following the department’s latest guidelines

- See course website for extensions, late policies, etc.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>15%</td>
</tr>
<tr>
<td>Project 2</td>
<td>15%</td>
</tr>
<tr>
<td>Project 3</td>
<td>15%</td>
</tr>
<tr>
<td>In-class quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>Homework</td>
<td>5%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>25%</td>
</tr>
</tbody>
</table>
Exams

• All exams are closed book, open crib sheet
• Exam dates and time can be found on the schedule at https://cs168.io
• Alternate midterm will be offered in the time slot directly after the regular exam
• Alternate final will be offered in the time slot immediately before the regular exam
 • With restrictions – look out for our Ed post with more information on this topic
 • DSP students will be accommodated as needed
 • There will be no additional alternates
Class communications

• Website: cs168.io
 • Assignments, lecture schedule, slides

• Announcements will be on Ed

• Use Ed for intra-class communication as much as possible

• Email cs168@berkeley.edu only if necessary
 • Reaches me, Rob, Efsane, and Sarah
Course Material

• Disclaimer: we’re still figuring out how to teach system architecture

• Focus on fundamental questions and tradeoffs
 • The broader design space, rather than the details of the solutions implemented today
 • Ideally, we do this together as a joint design exercise

• You will also have to learn the current design
 • But with a good understanding of where and why it falls short

• You will end up with a mix of the “big picture” and “details”
Fundamental questions

- How do you architect the Internet?
- How do you find a path from source to destination? (routing)
- How do you build reliable communication on top of an unreliable network? (transport)
- How do you share network resources across users? (congestion control)
- How do you federate a set of competing network providers?
-
First half of course: basics

• General overview
• Architectural principles
• Routing
• Reliable data transfer
• Naming and Addressing
• Etc.
Second half of course: advanced topics

• Congestion control
• Inter-domain issues
• HTTP & the Web

• Newer topics:
 • Cellular and datacenters
 • 2 lectures on RDMA -- taught by Nandita Dukkipati from Google
 • 2 guest lectures – tentatively on networking GPU/TPU clusters, and rural connectivity
 • Read a research paper!
What you will not learn...

- How to setup or operate real networks
- Tiny details of current network protocols or the Linux networking stack
- Instead, you will learn about the fundamental challenges in designing the Internet
 - And quite a bit about how the Internet currently addresses these
- Make sure this is what you’re looking for!
Textbook

 - 5th and 6th editions ok, but translate the reading assignments

- You will not be tested on material we didn’t cover in lecture or section
 - Use as a reference and a source of examples
For next time...

• If you plan to drop, please do so ASAP

• Discussion sections will start next week, on 1/22

• In-class quizzes start next week