Ethernet, ARP, and DHCP

Spring 2024

cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!
Before the break…

This week – we’ll think about putting together the end-to-end picture.
Today - **local area networking.**

We’ve thought about the wide area and datacentre network - but not our local network.
What happens in a LAN?

- Forwarding local hosts → router, and host → host packets.
 - Layer 2 forwarding – focus on Ethernet today.
 - Layer 2 addressing.

- Discovering local IP (Layer 3) addresses and routers.
 - DHCP, SLAAC.

- Fitting different types of addresses together:
 - How do Layer 3 addresses and Layer 2 addresses fit together? (ND, ARP)
 - How do private IP addresses and Internet addresses fit together? (NAT)
Looking at Layers Again

Layer 7
Application → DNS, HTTP, …

Layer 4
Transport → TCP

Layer 3
Network → IP

Layer 2
Data Link → Ethernet

Layer 1
Physical → Optical fibre, copper

We skipped over this layer previously - but it is vital to our end-to-end picture!
Layer 2 – Ethernet
Connecting local hosts together

- We have generally shown one host connected to a router.
 - Or assumed all packets go via a router.

- But in our local network – we might have multiple computers that are connected within the same network.

Our assumed view... ...really looks like this... ...or this!
How could we build this local network?

Meshes – needs a lot of cabling and a lot of ports per host.

A bus approach - introduces a **shared** media.
Some history - ALOHANet

- Norman Abramson had a problem at the University of Hawaii in 1968.
 - How do we allow people on other islands access to the U of H computer?

- ALOHANet
 - Additive Links On-line Hawaii Area
 - Wireless communications from terminals (computers) on other islands.
 - Hugely influential.

- ALOHANet was wireless but in these radio networks there is a *shared medium* (the electromagnetic spectrum).
 - Similar problem to the *shared media* in our local bus network.
 - And our bus network *could* have been wireless (we'll come back to WiFi).
Shared Media

- In a network with a *shared medium*, then transmissions from different nodes may interfere or *collide* with each other.

- We need a way to allocate the medium to everyone wanting to use it…
 - A *multiple access protocol*.

![Diagram of a network with shared media](image-url)
Common Multiple Access Protocol approaches

- Divide the medium by frequency – frequency-division multiplexing.
 - Give each connected node some slice of frequencies.
 - Can be wasteful – only a specific amount of frequency to allocate.
 - Not everyone has something to say all the time (many frequencies idle).

- Divide the medium by time - time-division multiplexing.
 - Divide time into fixed slots and allocate them to each connected node.
 - Same downside – only so much time, many slots are idle.

- Alternative: can connected nodes take turns?
Turn-taking Schemes

- Polling protocols.
 - A coordinator decides when each connected node can speak.
 - e.g., Bluetooth
Turn-taking Schemes

- Polling protocols.
 - A coordinator decides when each connected node can speak.
 - e.g., Bluetooth

Yes, blah blah
blah blah
Turn-taking Schemes

- Polling protocols.
 - A coordinator decides when each connected node can speak.
 - e.g., Bluetooth
Turn-taking Schemes

- Polling protocols.
 - A coordinator decides when each connected node can speak.
 - E.g., Bluetooth
Turn-taking Schemes

- Token-passing
 - Virtual “token” passed around, only the holder can transmit.
 - IBM Token Ring and FDDI.
Turn-taking Schemes

- Token-passing
 - Virtual “token” passed around, only the holder can transmit.
 - IBM Token Ring and FDDI.
Alternative – *Random Access*

- Both of these mechanisms are **partitioning approaches**.
 - Essentially, we are dividing by time – but more dynamically.
 - Require some form of inter-node communication.

- An alternate idea – just allow for nodes to talk when they have something to say.
 - And deal with collisions when they occur.

- Used by ALOHANet and then later in Ethernet.
ALOHANet’s Random Access

- Hub node on Oahu.
- Remote nodes across Hawaii.

- Used two frequencies:
 - **Hub transmits on its own frequency.**
 - Only one sender – no collisions.
 - All remote nodes listen to this frequency.
 - **All remote sites transmit on one frequency.**
 - May collide.
 - Only the hub listens to the remote frequency.
ALOHANet: Pure ALOHA random access scheme

- If remote has a packet – just send it.
 - No a priori coordination among remote sites.

- When the hub gets a packet – send ACK.

- If two remote sites transmitted at once, collisions results in a corrupted packet.
 - Hub doesn’t ACK!

- If a remote sender doesn’t get the expected ACK – then:
 - Wait a random amount of time.
 - Then resend, probably avoiding collisions this time.
Questions?
Ethernet and CSMA

- Ethernet – used as the most common wired Data Link protocol.

- Refined the ALOHA multiple access protocol to allow access to a shared Ethernet bus resulting in Carrier Sense Multiple Access (CSMA).

- Where ALOHA is rude, CSMA is polite.
 - Rather than just starting talking, and dealing with collisions…
 - CSMA listens first, and then starts to talk when it is quiet.
 - “Listen” means sensing the signal (carrier) on the shared medium.
Ethernet: CSMA and propagation delay

- CSMA does not necessarily avoid collisions – because of propagation delay.

- t=0:
 - H2 transmits.
 - Signal propagates through the shared media.
Ethernet: CSMA and propagation delay

- CSMA does not necessarily avoid collisions – because of propagation delay.

- $t=0$:
 - H2 transmits.
 - Signal propagates through the shared media.

- $t=2$:
 - H3 has heard, won’t transmit.
 - H4 has not heard – it’s safe to transmit!
 - Signal propagates as time goes by
 - …and collides with H2’s signal.

- Solution: CSMA/CD.
Ethernet: CSMA/CD

- *Carrier Sense Multiple Access with Collision Detection* (CSMA/CD).

- Modification to the previous approach:
 - Listen *whilst* you talk.
 - If you start hearing something whilst you are still transmitting – *stop!*
 - Hence - detect the collision.

- Some additional complexities – but this is the core idea.

- What do we do after detecting a collision?
Ethernet: CSMA/CD

- After collision – wait a random amount of time and retransmit.

- If the link has many senders who want to talk (has high contention) we may keep colliding.

- Use randomised *binary exponential backoff*…
 - If retransmit after collision also collides, wait up to twice as long.
 - Continue doubling for every subsequent collision.
 - Retransmits fast when possible, slowing down where necessary.
Questions?
Ethernet as the LAN network protocol

- Local Area Networks are generally Ethernet.

- Gives us a way to have different machines send signals to each other directly.
 - Which gives us a good way to communicate with other local computers!

- Analogy: many people in the same room – we can talk to each other locally without going via the postal system.
Ethernet Addressing

- If I send a signal (shout in this room) – everyone gets the message.

- But we do want some way to be able to identify the destination of a particular message.
 - E.g., just talk to one person in the room – not talk to everyone!

- We therefore need some form of addressing to be able to identify different hosts connected to the same medium.
 - Like we would use a *name* within this room to talk to one another.
Ethernet: Addresses

- Ethernet has Media Access Control (MAC) addresses.
 - These are Layer 2 addresses – we don’t need to know anything about what is inside the Ethernet Frame (i.e., it doesn’t matter whether it’s IPv4, IPv6, or even IP at all!)
 - Remember - our layers build on top of one another.

- MAC addresses are 48-bits.
 - Usually shown as six two-digit hex numbers with colons.
 - Sometimes referred to as ether or link addresses.

```bash
$ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
    options=400<CHANNEL_IO>
    ether f8:ff:c2:2b:36:16

rjs@jumphost:~$ ip link show ens4
2: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460
    qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 42:01:0a:8a:00:03 brd ff:ff:ff:ff:ff:ff
    altname enp0s4
```
Ethernet: MAC Addresses

- MAC addresses are allocated according to organisation.
 - Usually the manufacturer of the Ethernet network interface card (NIC).

- Typically stored permanently in the NIC (“burned in”).
 - Often can be overridden by software.

- Structure:
 - Two bits of flags (we won’t discuss this)
 - 22-bits identifying company/organisation (e.g., device manufacturer)
 - 24-bits of identifying space.

- Usually supposed to be globally unique.
 - You might plug your computer in anywhere...
Ethernet: Types of communication

- We have typically talked about **unicast**.
 - Send to any one recipient.

- We’ve mentioned other types:
 - Anycast – send to any one member of a group.

- There are other models that we might care about:
 - Speak to everyone in the room – **broadcast**.
 - Speak to everyone who has joined a group in the room – **multicast**.

- Ethernet supports both multicast and broadcast.
 - And generally they are not distinguished from each other at the Ethernet level.
Ethernet: Unicast

- **Unicast** is the typical type of communication we have talked about.
 - A source host wants to talk to a specific destination host.

- The Ethernet header has the same types of fields as those that we talked about in IP for this purpose.
 - A data packet in Ethernet is referred to as a *frame*.

| Preamble (7) | SFD (1) | Dest. MAC (6) | Src. MAC (6) | EtherType (2) | Payload | FCS (4) | IPG (12) |
Ethernet: Unicast

- **Unicast** is the typical type of communication we have talked about.
 - A source host wants to talk to a specific destination host.

- The Ethernet header has the same types of fields as those that we talked about in IP for this purpose.
 - A data packet in Ethernet is referred to as a *frame*.

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>7</td>
</tr>
<tr>
<td>SFD</td>
<td>1</td>
</tr>
<tr>
<td>Dest. MAC</td>
<td>6</td>
</tr>
<tr>
<td>Src. MAC</td>
<td>6</td>
</tr>
<tr>
<td>EtherType</td>
<td>2</td>
</tr>
<tr>
<td>Payload</td>
<td></td>
</tr>
<tr>
<td>FCS</td>
<td>4</td>
</tr>
<tr>
<td>IPG</td>
<td>12</td>
</tr>
</tbody>
</table>

- **Header fields** to separate packets on the wire.
- **Checksum at Layer 2** - not relying on higher layers!
Ethernet: Unicast

- **Unicast** is the typical type of communication we have talked about.
 - A source host wants to talk to a specific destination host.

- The Ethernet header has the same types of fields as those that we talked about in IP for this purpose.
 - A data packet in Ethernet is referred to as a **frame**.

<table>
<thead>
<tr>
<th>Preamble (7)</th>
<th>SFD (1)</th>
<th>Dest. MAC (6)</th>
<th>Src. MAC (6)</th>
<th>EtherType (2)</th>
<th>Payload</th>
<th>FCS (4)</th>
<th>IPG (12)</th>
</tr>
</thead>
</table>

Who are we sending to on the shared medium – identified by MAC.

Who is sending this packet - with MAC address.

What is in the payload – IPv4, IPv6,
Ethernet: Unicast

- To send a packet to a specific destination host - we set the destination MAC to a specific remote machine’s MAC address.

- Packets go to everyone on the shared medium (wire).

- Receivers check the destination MAC to determine whether the packet is destined to them.
 - “Is dst MAC == 42:01:0a:8a:00:03? It’s for me!”
We have not explored Layer 2 networks – but given that we have a source and destination address, we can build networks at Layer 2.

Our host ID when talking about routing was an IP address – but it could just be the MAC address.
Thinking back to routing…

R2's Table

<table>
<thead>
<tr>
<th>Dst</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R1</td>
</tr>
<tr>
<td>B</td>
<td>R3</td>
</tr>
<tr>
<td>C</td>
<td>R3</td>
</tr>
<tr>
<td>D</td>
<td>R4</td>
</tr>
</tbody>
</table>

.. or ..

R2's Table

<table>
<thead>
<tr>
<th>Dst</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
</tbody>
</table>
Thinking back to routing...

R2's **Forwarding Table**

<table>
<thead>
<tr>
<th>Dst</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R1</td>
</tr>
<tr>
<td>B</td>
<td>R3</td>
</tr>
<tr>
<td>C</td>
<td>R3</td>
</tr>
<tr>
<td>D</td>
<td>R4</td>
</tr>
</tbody>
</table>

R2's **Routing Table**

<table>
<thead>
<tr>
<th>Dst</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
</tbody>
</table>

Destination could be our MAC addresses.

MAC addresses are not aggregatable – allocated by manufacturer.
Ethernet: Broadcast

- **Broadcast – send to everyone!**
 - Specifically, everyone on the specific Ethernet network...
 - ...everyone on the same cable.

- **The packet already reaches everyone – they are connected to the shared media.**
 - We need receivers to listen.

- **Broadcast is implemented using the all ones address.**
 - FF:FF:FF:FF:FF:FF

- **Any Layer 2 switch needs to know to send this address to all ports.**
Ethernet: Multicast

- Multicast – send to all members of a group.
 - Trivial on classic Ethernet – since everyone gets the packet.

- Implemented by having specific addresses – one of the flags in the address set to 1.
 - 01:00:00:00:00:00
 - Normal addresses all have an even first byte.
 - This 1 is the first bit on the wire – bytes are sent low bit first.

- Broadcast is just a special case of multicast – where everyone is in a group.

- Layer 2 networking for multicast gets more complicated.
 - Need to know who is in the group.
 - Similarly complicated at Layer 3.
Why do we need multicast in a LAN?

- Apple invention: Bonjour/mDNS.

- iPhone wants to discover any Apple TV, or HomePod that it can play music on.
 - It can actively discover this “hey local Apple products, are there any speakers?”.
 - Sends to a multicast group that all Apple products join by default.
 - Equally, HomePod/Apple TV can advertise “I am an Apple TV!”.

- Actually uses DNS advertisements that are sent to multicast addresses.
 - Using specific types of records – e.g., SRV – to advertise capabilities.
Questions?
How do Layer 2 and Layer 3 work together?
Sending an IP packet to a local host

- Local routing table says that our subnet is local.
 - 192.0.2.0/24 means that anything in 192.0.2.X is connected to the same network as us.
Sending an IP packet to a local host

- Local routing table says that our subnet is local.
 - 192.0.2.0/24 means that anything in 192.0.2.X is connected to the same network as us.

<table>
<thead>
<tr>
<th>IP header</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.1</td>
<td>192.0.2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SFD</th>
<th>Dest. MAC</th>
<th>Src. MAC</th>
<th>EtherType</th>
<th>Payload</th>
<th>FCS</th>
<th>IPG</th>
</tr>
</thead>
</table>
Sending an IP packet to a local host

- Local routing table says that our subnet is local.
 - 192.0.2.0/24 means that anything in 192.0.2.X is connected to the same network as us.

What do we put here?!
Options for Sending L2 Packets

- We could just send our packet to everyone – FF:FF:FF:FF:FF:FF.
- Every station connected to the Ethernet network needs to receive and process the frame.
- Any Layer 2 network has to use bandwidth to carry the frame to every host.
- We really want to **unicast** this frame to the right MAC address that corresponds to the destination IP address.
- **We need some mechanism for us to discover the mapping between IP address and MAC address.**
Overview: Resolving L2 addresses.

- The high-level concept is generally the same across IPv4 and IPv6.
 - Some of the implementation details are a little different.
- High level conversation flow – solicited and advertised.
- Solicitation:
 - “I’m host A, who has IP address 192.0.2.1?”
 - “Hi, I’m host B, I own 192.0.2.1!”
- Advertisement:
 - “I’m Host B, I own 192.0.2.1”
 - (even though no-one asked :-))
- What do “host A” and “host B” mean?
Overview: Resolving L2 addresses.

- The high-level concept is generally the same across IPv4 and IPv6.
 - Some of the implementation details are a little different.

- High level conversation flow – solicited and advertisement.

- Solicitation:
 - “I’m 42:01:0a:8a:00:03 who has IP address 192.0.2.1?”
 - “Hi, I’m 44:01:0c:8d:02:05, I own 192.0.2.1!”

- Advertisement:
 - “I’m 44:01:0c:8d:02:05, I own 192.0.2.1”
 - (even though no-one asked :-))

- This provides a link between Layer 2 (MAC) addresses and Layer 3 (IP) addresses.
ARP: Address Resolution Protocol

- For IPv4, we know an IP address, and we want the corresponding MAC address.
- ARP runs directly on top of L2 (not IP).
- Basic underlying protocol:
 - Request (“who has”)
 - Response (“I am”)
- Requests need to reach everyone within the Ethernet network to find a specific Target Hardware Address.
 - Send it to the broadcast address (FF:FF:FF:FF:FF).
- Responses go back to the original requester – we can use their MAC address from the request.
- Unsolicited responses are announcements that go to everyone.
 - Can be sent to the broadcast address.
ARP: Examples

- sudo tshark -n arp

Capturing on 'Wi-Fi: en0'

3. 5.643811 f8:ff:c2:2b:36:16 → 68:72:c3:c5:b8:86 ARP 42 192.168.86.38 is at f8:ff:c2:2b:36:16
5. 6.689367 f8:ff:c2:2b:36:16 → ec:b5:fa:1d:58:16 ARP 42 192.168.86.38 is at f8:ff:c2:2b:36:16

5 packets captured

We (previously) asked for 192.168.86.1
ARP: Examples

- `sudo tshark -n arp`

Capturing on 'Wi-Fi: en0'

3. 5.643811 f8:ff:c2:2b:36:16 → 68:72:c3:c5:b8:86 ARP 42 192.168.86.38 is at f8:ff:c2:2b:36:16

5. 6.689367 f8:ff:c2:2b:36:16 → ec:b5:fa:1d:58:16 ARP 42 192.168.86.38 is at f8:ff:c2:2b:36:16

5 packets captured

Someone is asking us for our address.

So we respond.
ARP: How do we know what to ARP for?

- We need to ARP for local IP addresses.

```bash
netstat -rn -f inet
```

Routing tables
Internet:
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Netif</th>
<th>Expire</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>192.168.86.1</td>
<td>UGScg</td>
<td>en0</td>
<td></td>
</tr>
<tr>
<td>192.168.86</td>
<td></td>
<td>UCS</td>
<td>en0</td>
<td>!</td>
</tr>
</tbody>
</table>

We referred to these kind of entries as “direct”.
Questions?
Note: Local IP addresses & Routing

- What is local to a particular host?
 - A range of IP addresses – i.e., an IP prefix.
Note: Local IP addresses & Routing

- What is local to a particular host?
 - A **range** of IP addresses – i.e., an IP prefix.
 - **192.0.2.0/24 → Direct**
Aside: What did Direct actually mean?

- Something that we don’t have a next hop for.
 - We’ve said it just means “send to port 1”.
 - What happens if there are multiple hosts on the same port?
Aside: What did Direct actually mean?

- Something that we don’t have a next hop for.
 - We’ve said it just means “send to port 1”.
 - What happens if there are multiple hosts on the same port?
 - Direct actually meant “just send to the right Layer 2 address for the destination IP address”
What do we ARP for?

- Things that are directly connected to us in our routing table.

- Convert our address to binary, and consider our netmask.
 - Netmask expressed as CIDR (/24) or as a dotted quad – 255.255.255.0.

- This allows us then to form an ARP who–has request towards the Ethernet broadcast address.
 - The FF:FF:FF:FF:FF:FF broadcast address is independent of the Ethernet network we are on!

- Subsequently, we can update our local ARP Table to store the mapping between the destination IPv4 address and MAC address.
 - And just send unicast Ethernet frames to that destination MAC address.
The ARP Table

- Stores mappings between IPv4 addresses and Ethernet MAC addresses.

- Format:
 - IPv4 address, MAC address, Interface, Expiry

- We need to know the address on a specific interface that we have an IP address assignment on.

- Must be an expiry time (time to live) since IP addresses might change owners.
 - A new machine could connect to the network and use the same IPv4 address.
The ARP Table

- `arp -n -a`
- ? (192.168.86.1) at 3c:28:6d:67:7f:18 on en0 ifscope [ethernet]
- ? (192.168.86.21) at f4:f5:d8:2f:8c:a8 on en0 ifscope [ethernet]
- ? (192.168.86.23) at c0:95:6d:7e:69:bd on en0 ifscope [ethernet]
- ? (192.168.86.29) at 3c:28:6d:67:f9:c5 on en0 ifscope [ethernet]

- Remote IPv4 address
- MAC address associated with the address
- Interface name
Sending an IP packet

- We are 192.168.86.38 sending to 192.168.86.1.
 - Look at routing table 192.168.86.0/24 is direct.
Layer 2 and Layer 3 destinations are different.

- Our routing table might say we have a default route.
 - 0.0.0.0/0 is via 192.0.2.1
 - We are connected to 192.0.2.0/24.

- We want to send a packet to 10.0.0.1.
 - This isn’t local!

- Our routing table says send to 192.0.2.1.
 - We build an Ethernet frame that has a destination MAC address corresponding to the MAC for 192.0.2.1.
 - The IP header (L3) is still 10.0.0.1.

- Each hop that forwards changes the L2 destination but not the L3 destination.
IPv6: Neighbour Discovery

- IPv6 uses a similar mechanism to ARP: Neighbour Discovery.
 - Uses ICMPv6 towards well-defined multicast addresses.
 - These multicast addresses are programmatically associated with multicast Ethernet MAC addresses.

- Neighbour Solicitation allows a node to ask for the association between an IPv6 address and MAC address.
 - Uses the IPv6 address to determine the Ethernet multicast MAC.
 - Local IPv6 address is used by a node to determine which multicast groups to join.

- Neighbour Advertisement allows a node to reply with the association between IPv6 and MAC address.
Questions?
Learning about our local network.
What does a host need to know?

- If we connect to a new Ethernet network – we know our own MAC address (burnt into our hardware).

- We need to know the IP address we should use for this network.
- And the subnet mask (network size) that tells us which other addresses are directly connected to us.

- We need to know where to send packets for IP addresses that are not directly connected to us.

- We might need to know where the resolving DNS server for this network is.
How could we learn this additional information?

- Option 1: **Manually.**

- When a machine connects to a new network:
 - Your address is **192.168.86.38**.
 - The network size is **/24**.
 - Your *default gateway* is **192.168.86.254**.
 - Your resolving DNS servers are **8.8.8.8** and **1.1.1.1**.

- Humans go and configure these details.

- What happens when we move location?
 - Addresses were hierarchically allocated based on the network.
 - Your home network has different addresses and details to the Berkeley network.
How could we learn this additional information?

- Option 2: **Automatically.**

 - Routers are static – based on their location in the network.

 - Manually configuring addresses is acceptable – but hosts move more often.

Static addresses: 17.0.0.0/24

Via routing protocols: 17.0.0.0/24
How could we learn this additional information?

- Option 2: **Automatically**.
 - Invent a new protocol – **DHCP**.

Hi! I’m a new host on this network – please provide me with the details required.
DHCP

- DHCP is the *Dynamic Host Configuration Protocol*.
- Provides a way for a new host to query information from “the network” about the local environment that it is in.
- **DHCP carries:**
 - IP address assigned to the host
 - Netmask
 - “Default gateway” – the first-hop (directly connected router) that non-local packets can be sent.
 - This is where `0.0.0.0/0` is sent towards.
 - Additional information:
 - Local DNS resolving server.
 - Extensible to carry other information.
DHCP: Servers

- DHCP servers are added to the network.
 - Either on the local router or a separate machine that acts as the server.

- These servers listen on UDP port 67.

- DHCP servers are configured with required information:
 - First hop router address, local DNS servers.
 - A pool of usable IP addresses.
DHCP: IP Assignments

- Servers *lease* hosts IP addresses.

- Leases are only valid for a limited time (on the order of hours or days).
 - Hosts must renew the lease if they want to keep the address.

- Servers don’t offer the same address to other clients if leased.
 - Avoids conflicts of IP addresses.

- No need for any static configuration – just connected to the network and ask for the local details!
Questions?
DHCP: Message Flow

- Client sends a **discover** message – asks for configuration information from the local DHCP server.
- Local DHCP server(s) send **offer** messages with configuration information (e.g., particular IP).
- Client sends a **request** message to accept a particular offer.
- Server sends an **acknowledge** message to confirm the request was granted.
Client sends a *discover* message – asks for configuration information from the local DHCP server.

Local DHCP server(s) send *offer* messages with configuration information (e.g., particular IP).
DHCP: Message Flow

Client

- Client sends a **discover** message – asks for configuration information from the local DHCP server.
- Local DHCP server(s) send **offer** messages with configuration information (e.g., particular IP).
- Client sends a **request** message to accept a particular offer.

Server

- Server sends an **acknowledge** message to confirm the request was granted.
DHCP: Message Flow

- Client sends a **discover** message – asks for configuration information from the local DHCP server.
- Local DHCP server(s) send **offer** messages with configuration information (e.g., particular IP).
- Client sends a **request** message to accept a particular offer.
- Server sends an **acknowledge** message to confirm the request was granted.
DHCP

* DHCP is based on UDP – which runs on top of IP.

* How does the client know the server IP?
 * It doesn’t!

* It sends a message to an IPv4 broadcast address - **255.255.255.255**.
 * This maps to an Ethernet broadcast address - **FF:FF:FF:FF:FF:FF**.

* Thus, the client does not need to understand anything about the local network.

* Wait, what source IP address does it use?
 * **0.0.0.0**.

* What destination MAC address that the server sends to?
 * Could be broadcast – **FF:FF:FF:FF:FF:FF** is received by all hosts on the network.
 * Could be the MAC address that the DHCP request came from.
Where does the DHCP server live?

- Must be within the same Ethernet network – so broadcast frames reach it.
- Running on the local router – especially in home networks – is therefore very convenient.
- In larger networks, we might not want a DHCP server at every router.
 - Therefore we can relay requests from one router to a remote DHCP server.
Questions?
IPv6: Autoconfiguration

- DHCP also exists for IPv6 networks.
- But, remember, IPv6 neighbour discovery used IPv6 multicast addresses.
- MAC addresses are 48-bits, and IPv6 addresses are 128-bits.
- Thus, we can encode a MAC address and put it into an IPv6 address.
 - `fe80::/10` is assigned for “link local” IPv6 addresses.
 - We can configure an address in `fe80::/64` using our local MAC address.
 - Encoded using “Extended Unique Identifier” – EUI – as a 64-bit value.
- IPv6 nodes generate an `fe80::<64bit unique ID>` for each interface.
 - `fe80::/64` addresses are scoped per link - `fe80::1%interface`, since the same address can exist on multiple links.
IPv6: Extending Neighbour Discovery Protocol

- We can therefore get a local IPv6 address with no additional protocol in IPv6.
- We still need to have ways to discover the local router and DNS servers.
- This is done through additional messages in the Neighbour Discovery Protocol.
- **Router Solicitation** and **Router Advertisement** allow information to be sent from a router to hosts.
IPv6: StateLess Address Auto Configuration (SLAAC)

- Hosts *solicit* for routers on the local link – using a new message in IPv6 NDP.
- Routers *advertise* information about the local network to hosts.
- The local IPv6 network has a fixed prefix length of /64.
 - The router can just advertise the prefix that is being used – 2001:db8::/64.
 - Hosts use EUI-64 to configure their own address – does not need to be allocated (since MAC addresses are ~unique).
 - Additional mechanisms are needed for duplicate address detection (just in case!)
- Router Advertisement messages allow the default gateway and DNS servers to be communicated between a router and host.
Questions?
Recap

- Ethernet is a Layer 2 networking technology that provides connectivity between local nodes (routers and hosts).
- Ethernet addresses allow for packets to be sent between machines before they have IP addresses (or even when they don’t have IP addresses).
- ARP and Neighbour Discovery allow machines to map IP addresses to MAC addresses.
- DHCP provides a mechanism for dynamic configuration of Layer 3 information on hosts.