Review: Clark’s Paper + the Final

Exam
CS168

Sylvia Ratnasamy
Fall 2024



Outline

* Discuss Clark’88: The Design Philosophy of the DARPA
Internet Protocols

 Review for the final exam



Clark’88 Context

e David D. Clark (MIT): Chief Protocol Architect for the Internet from
1981-89

* At the time of writing ...
* 1 year after Cisco's 15t product, IETF started
* Number of hosts reaches 10,000
« NSFNET backbone 1 year old; 1.5Mb/s



General impressions

* What did you think of the paper?

* Important? Surprising? Snooze?

» My take: important because it provides context and clarity

* Plus a few tips for success
* Be clear about your goals

« Have a concrete/grounded use-case

* E.g. "... give users on the packet radio network access to the machines on the ARPANET."
* Learn by building, iterating (“engineering attitude”)

 E.g., separation of TCP/IP

* Attention to detall
» E.g., discussion of End of Letter’ flag



DDC'88

Goal 0: An “effective” technique for multiplexed utilization of existing
interconnected networks

Goal 1: Communication must continue despite loss of networks or gateways

Goal 2: Must support multiple types of communication service

Goal 3: Must accommodate a variety of networks [underneath]

Goal 4: Must permit distributed management of its resources

Goal 5: Must be cost effective

Goal 6: Must permit host attachment with a low level of effort

Goal 7: The resources used in the Internet architecture must be accountable



Goal 0: An effective technique for multiplexed
utilization of existing interconnected networks

* Multiplexing (sharing)
 Shared use of a single communication infrastructure
* Existing networks (interconnection)

* Tries to define an “easy” set of requirements for the underlying
networks to support as many as possible

e How: different networks connected by packet switched, store-and-
forward routers/gateways



Goal 1: Internet communication must continue
despite loss of networks or gateways.

“Entities should be able to continue communicating without having to reestablish
the high level state of their conversation”

“The architecture [should] mask any transient failure.”

Leads to:
1."Fate-sharing”



“Fate Sharing”

e Basic idea:

« Communication shouldn’t be disrupted by the failure of a particular
router/node in the network; two endpoints should be able to
communicate if some path exists between them

* Leads to the decision to keep communication state (e.g., which pkts have
been transmitted) at the endpoints, not in routers

* Now, if state is lost it's because the endpoint failed so it doesn’t matter!
l.e., an endpoint and its state “share the same fate”



Goal 1: Internet communication must continue
despite loss of networks or gateways.

“Entities should be able to continue communicating without having to reestablish
the high level state of their conversation”

“The architecture [should] mask any transient failure.”

Leads to:
1."Fate-sharing”
2. Stateless packet switches = “"datagrams”



Goal 2: Support multiple types of service

“Different services distinguished by differing requirements for such
things as speed, latency, and reliability”

Leads to: separation of TCP from IP



Goal 3: Support varieties of networks

‘[Very important that the Internet] be able to incorporate and utilize a
wide variety of network technologies”

Leads to: a minimum set of assumptions about the function the network
will provide

1."network can transport a packet”

2."of reasonable size”

3."delivered with reasonable reliability”



Other goals

Goal 4: The Internet architecture must permit distributed management of
its resources

Q. Does it accomplish this?

Goal 5: The Internet architecture must be cost effective.
Q. Is it cost effective?

Goal 6: Low cost of attachment

Goal 7: The resources... must be accountable
Q. What does this mean?
Q. What would such a network look like?



Other (prescient) observations in the
paper

“The most important change in the Internet...will probably be the
development of a new generation of tools for management of resources...”

Recall: Rob’s lecture and discussion of SDN, OpenConfig, etc.

“The relationship between architecture and performance is an extremely
challenging one...”

* the goal of the architecture was [...] to permit variability
Recall: Nandita’s lectures on Google’s efforts to tame tail latency in
datacenter contexts
“There may be a better building block than the datagram .."
* identify a sequence of packets -- “flow”

Recall: Rob’s lecture on OpenFlow



Outline

 Review for the final exam



Coverage

« Exam will emphasize material in lectures 15+ (i.e., not covered
by midterm)

* But lectures 1-14 are still in scope

 Familiarity with key concepts from those lectures is required for later
material

« Material from our upcoming guest lecture (lecture 27) will
only be lightly tested at a conceptual level, in the form of
true-false, simple multiple-choice



Style

* Similar to the midterm and practice material



This Review

» Walk through what we expect you to know
« Summarize — not explain -- key concepts and details

* If I didn't cover it, doesn’'t mean you don't need to know it
 But if | covered it today, you should know it!

* Use this slide deck as a check list

18



Outline

* Review:
* Wireless and Cellular (lectures 24, 25)
» Host Networking (lectures 22, 23)
* Datacenters and SDN (lectures 15, 16, 17)

* How the pieces fit (lectures 18-21)

* Not explicitly reviewing individual details of HTTP, DNS, Ethernet,
DHCP, etc.

* Pre-midterm material: concepts you should be familiar with

* Will go as far as time permits; entire slide deck will be
available

19



Lectures 25: Cellular

* Mobility introduces some fundamental new challenges
 Discovery, authentication, seamlessness, accounting

e Cellular infrastructure is composed of:
« Radio-Access Network (RAN) and Core

* RAN: antennas, radio transceivers, radio controller that assigns tower’s radic
resources to each user

 Core: implements various control and data functions related to mobility
* Mobility Manager, cellular DB, Radio GW, Packet GW

* Relevant identifiers: IMSI, IP addresses, IMEI, MSISDN

* 4 core operations: Discovery, attach, handovers, roaming
* Know how each works to the level of detail discussed in lecture



Lectures 24: Intro to Wireless

* Slides 1-28: only expect you to understand this slide at a high level
(no equations ~= A~+~il

Wired vs Wireless: Some Crucial Differences

Wireless is a fundamentally shared medium
Wired is not

Wireless signals attenuate significantly with distance
Wired signals do not

Wireless environments can change rapidly
Wired environments do not

Wireless packet collisions are hard to detect

Wired packets collisions are not

CS 168, UC Berkeley: 6
21



Lectures 24: Intro to Wireless

* Slides 1-28: only expect you to understand this slide at a high level
(no equations or details)

* Slides 28-49: do understand different media access approaches and
their tradeoffs

* Slides 50+: will not be tested



Lectures 24: Media Access

« CSMA: listen and don’t transmit if someone else is e
 Suffers from hidden and exposed terminals

* RTS/CTS: request-to-send / clear-to-send
* Solves the hidden terminal @)
* Problem: only partially helps with exposed terminals

* Problem: RTS collisions (A and C simultaneously send an RTS to B)
* Hence, additional techniques (MACA/MACAW)

For the exam:
* You don't need to know the specific rules of a particular protocol (MACA,

MACAW, etc)

* Instead, we'll give you a protocol and you should be prepared to analyze its
(AR ™




Outline

e Review:

» Host Networking (lectures 22, 23)
* Datacenters and SDN (lectures 15, 16, 17)

* How the pieces fit (lectures 18-21)

* Not explicitly reviewing individual details of HTTP, DNS, Ethernet,
DHCP, etc.

* Pre-midterm material: concepts you should be familiar with

* Will go as far as time permits; entire slide deck will be
available

24



Lectures 22-23: Host Networking (in
Datacenters)

Host networking refers to the functions we implement at the host to support the
abstraction of the network as a fast, reliable, secure, ordered byte stream

Functions:
* Loss recovery, congestion control, flow control (our TCP lectures)
* + load balancing, traffic shaping, QoS (know these)
* + BW allocation, security (only FYI, out of scope for exam)

These functions address the new requirements that arise with DC workloads
* Performance: high BW and low latency
» Ease of development
» CPU efficiency

Traditional OS-based host networking makes it difficult to meet the above requirements
+ Kernel development is slow and painful
* Memory copies between userspace and kernel hurts performance
» CPU resources are consumed to implement the above functions



Lecture 22: OS bypass and NIC offloads

 Solution#1: “OS bypass” stacks > implement host networking functions in userspace

» Addresses the problem of memory copies and kernel development but still
consumes CPU resources

 Solution#2: NIC offload - run host networking functions on the NIC, freeing up CPU
resources
* Improvement in CPU efficiency depends on what functions we can offload
» Three phases (and degrees) of NIC offload
* Phase 1: simple stateless functions:
« Examples: checksum, segmentation, tx/rx queue selection

« Understand the what and why of these examples but not expected to know the
“how” in any detail

* Phase 2: simple stateful functions:

« Example: match-action table to implement the network virtualization concept
livndvadiicnd tva Dali/a CRNNANI lAac#iinvA)



Lecture 22: RDMA

RDMA - a new abstraction whereby a host A can efficiently read from (write to) the
memory at a remote host B

Efficient > consuming minimal CPU cycles at host A and host B

How?
* NICs directly read from (write to) host memory

* NICs and network responsible for all aspects of host networking including data
transmission, reliability, CC, etc.

* CPU just initiates the transfer then gets out of the way

Implemented via “queue-pair” abstraction on an RDMA NIC

» CPU writes send/receive work queue elements (WQEs) to the NIC's queue-pair;
WQEs point to memory buffers

* NIC notifies CPU via completion queue elements (CQE)



Lectures 23: Advanced Host Networking
Functions
« We looked at how 3 advanced host networking functions are

implemented in (Google) datacenters
 Delay-based CC (Swift), Protective Load-balancing (PLB), Traffic Shaping using timing

Wh ee | S Congestion cor:trol target operating points
* Understand the problem each of the above i _ Dl
 Swift > loss-based CC leads to high packet delay ) Tradtionaloss-based CC e RenolCUBIC

State-of-the-art CCs (Swift/BBR)

; - -

delivery rate




Lectures 23: Advanced Host Networking
Functions

« We looked at how 3 advanced host networking functions are
implemented in (Google) datacenters

 Delay-based CC (Swift), Protective Load-balancing (PLB), Traffic Shaping using timing
wheels

« Understand the problem each of the above is solving

 Swift > loss-based CC leads to high packet delay
* PLB = load-balancing with ECMP-based hashing is still imperfect

» Timing wheels 2 need traffic shaping but implementing it with per-flow queues doesn't
scale

 Understand the essential idea behind each solution

» Swift > AIMD based on packet delay (out of scope: implementation details of Swift)

» PLB = on congestion, change the “flow label” field in the IP header (changes the fields
being hashed)



Outline

e Review:

* Datacenters and SDN (lectures 15, 16, 17)

* How the pieces fit (lectures 18-21)

* Not explicitly reviewing individual details of HTTP, DNS, Ethernet,
DHCP, etc.

* Pre-midterm material: concepts you should be familiar with

* Will go as far as time permits; entire slide deck will be
available

30



Lectures 15-16: Datacenters

* DCs in the big picture

—

Peering

Peering

Wide Area Network

31



Lectures 15-16: Datacenters

* DCs in the big picture

- Anatomy of a datacenter: servers in racks, top-of-rack switches,
interconnected by a DC network (“fabric”)

* Know how DC networks are different: homogeneous, single admin control,
performance is top priority

* Large volume of “east-west” traffic means we need high bisection bandwidth
networks

 Challenge: how do we build a high bisection bandwidth ne! | le
and cost-effective manner?

» Solution: Clos networks - interconnect smaller/cheaper swi |
bisection BW network




Lectures 15;: CC in Datacenters

* In datacenters, queueing delay matters (because propagation delay is
now in microseconds)

* Problem: TCP deliberately fills queues, leading to undesirably high
queueing delay

« We've seen two different approaches for how current datagenters fix

o %
this problem Q) e,

« #1 DCTCP: routers mark congestion using “Explicit Congesfizgn“ 0“” Z
06 o)

Notification (ECN)” bit in header ’70 . oo%

* Sender reduces CWND on seeing the ECN bit set (vs. waiting for packet Ioss?’/ ‘e, %es,
00 @Q‘@oc)'
- #2 Swift: delay-based CC (Nandita's lecture) Vor”
%4,
* Both #1 and #2 were relatively easy/incremental changes to switches

and endhosts



Lectures 16: Routing in Datacenters

Y
4,
/4/%7
* Problem: fully utilizing the high bisection BW available > need mu?ﬁ:—
0//
path routing %,
 Goal: use all the paths of equal cost between a source and destination
* Solution: Equal-Cost Multi Path (ECMP) forwarding
 Every router maintains next-hop information for all paths of equal cost (vs.
picking one based on tie-breaking)
* Picks the next-hop along which to forward a packet by hashing flow-related
fields in the packet’s header
* Implication: all packets in a flow follow the same path but ¢ }%\\ B N N
follow different paths s i \\\ 12:1222:
 ECMP is about how we do forwarding given multiple " \ moofi\

need to extend routing protocols to discover those n @;@

* We covered simple DV/LS extensions for this



Lectures 16: Routing in Datacenters

AL
0//
. . °L
Topology-aware addressing enables scalable routing between server hosts o,

. . 5%
However, in datacenters, we run many VMs on a host and apps require connectlwty‘f?egy/veen
VMs %,

Problem: VM addresses assigned by user (vs. operator) + VMs can be migrated - can’t
assume topo-aware addressing

Solution: separate the problem of connectivity between physical hosts (“underlay”) and VMs
(“overlay”)

* Underlay connectivity: established by routing protocols as before (topology-aware addressing, etc)
« Overlay connectivity: encapsulation
Encapsulation: IP packet from VM1 to VM2 is carried as the payload of an IP packet from
hosts H1 to H2

» Implication: underlay only sees packets to/from H1 and H2; where VM1 runs on physical host H1,
and VM2 on H2

« Adding (removing) the underlay headers is done in a virtual switch that runs on host H1 (H2)

One last problem: multi-tenancv means VMs from diff tenants miaht nick the same overlay



Lectures 17: SDN
Understand the “why” of SDN

« We've talked about the network’s data and control plane, but there’s also a
management plane

« E.g., needed to configure router link costs, read telemetry counters, etc.
* The management plane was much neglected until ~mid 2000s

 Fixing the management plane was challenging because operators couldn’t
innovate with router internals

* Solution: decouple management, control, and data planesdn a.routercwith open
APIs between planes and the role of OpenFlow

+ Enables flexibility in who implements the control and management planes and flexibility in
where we run these planes

- Early SDN proposal:
 OpenFlow as the APl between data and control planes Know the “what and why” of use-cases;
. . ] Oll)’)/y the enera/gpproach to “how”
« Data plane remains largely unchanged: implemented in routers by router vendors

Rob’s slides on SDN applied to the data plane and management plane are out of scope (slides 70+) | a

rantralizad rantrallar vve 1n ranrtarec)



Outline

e Review:

* How the pieces fit (lectures 18-21)

* Not explicitly reviewing individual details of HTTP, DNS, Ethernet,
DHCP, etc.

» Material covered by the midterm

* Will go as far as time permits; entire slide deck will be
available

37



L2 and L3 have separate addressing

« MAC (L2) addresses

» Hard-coded ("burned in") by device manufacturer

* Not aggregation-friendly

 Portable, and can stay the same as the host moves (topology independent)
» Used to get packet between interfaces on the same L2 link/network

* IP (L3) addresses
* Assigned by network operators; configured or learned dynamically (DHCP)
* Hierarchical structure and allocation allows aggregation

* Not portable and depends on where the host is attached (topology
dependent)

» Used to get the packet to the destination IP “subnet”



Bootstrap and discovery

* A host A is "born” knowing only its MAC address
* Must discover some information before it can communicate with a remote host B

* What is my (A's) IP address?
« DHCP

« What is B's IP address?
« DNS

* What is B's MAC address? (if B is local)
 ARP

« What is my first-hop router’s IP address (needed if B is remote)
« DHCP

« What is my first-hop router’'s MAC address?
* ARP



ARP and DHCP

* Discovery protocols
* ARP = Address Resolution Protocol
* DHCP - Dynamic Host Configuration Protocol
» Confined to the host's local L2 network
» Rely on broadcast capability (as most discovery protocols)

- ARP

* Initiating host broadcasts query: “Who has IP address w.x.y.z"?

» Host with w.x.y.z responds (unicast): " am w.x.y.z and my MAC address (s
al:b2:c3:d4:e5:f6"

* DHCP

» Used by a host to learn (bootstrap itself) about its L3 context
 Discovers its IP address, netmask, IP address of first-hop router, IP address of



Key ideas in both ARP and DHCP

* Broadcasting: can use broadcast to make contact
* Scalable because of limited size

« Caching: remember results for a while
« Store the information you learn to reduce overhead
 Associate a time-to-live field with the information
» ... and either refresh or discard the information



DNS: Quick review

* Why we need it? Convert names to IP addresses

* Design based on three intertwined hierarchies
* Naming structure: names are hiearchical (cs.berkeley.edu)
« Management: hierarchy of authority over names
* Infrastructure: hierarchy of DNS servers

* Names are “resolved” by starting at the root and querying down
the hierarchy

* Availability / scalability / performance: via partitioning,
replication, cachina


http://www.cs.berkeley.edu/

HTTP / Web: Quick Review

* Essential components:
« HTML: content with links

« URL: reference to content (lot going on in a URL! — protocol, name,
location, resource, parameters...)

* Infrastructure: Client browsers and Web servers
« HTTP: protocol used to fetch content from servers

» Availability, scalability, performance

» Caching: at browser and forward/reverse proxy servers controlled by HTTP
caching directives

« CDNs: 3"9-party entity that replicates/caches/serves your content using
their infrastructure

e TCP nntimi7zatinn< ranrciirrant naercictent ninalined rannartinne amanrtize



Putting the pieces together

Walk through the steps required to download
www.google.com/index.html from your laptop

yourDNS \/\/\/\

— T ‘ )\
yourDHCP @
T
- Y\ ------------------------- Googles
" f/ < datacenter
You UCB /\ /\ /

router >// Count the number of protocols
-y that come into play!

» Assume: cold start’ -- nothing cached anywhere

* Assume: yourDNS on a different subnet from
yourDH

Dorm * Ignore intra- and interdomain routing protocols



http://www.google.com/index.html

Step 1: Self discovery

 You use DHCP to discover bootstrap parameters
* your IP addr (u.u.u.u)
» your DNS server’s IP (u.dns.ip.addr) '
 R's IP address (r.r.r.r) yourDHCP

u
router

Yo
» Exchange between you and yourDHCP

Ethernet P UDP DHCP

* Protocol count = 4




Next...

* You are ready to contact www.google.com

- need an IP address for www.google.com
= need to ask google’s DNS server
= need to ask my DNS server to ask google’'s DNS...

= | know my DNS server's IP addr is u.dns.ip.addr
—> create a packet to send...

source: u.u.u..u
dst: u.dns.ip.addr

Ethernet ‘ P UDP DNS

destination
MAC?


http://www.google.com/
http://www.google.com/

Step 2: Getting out the door

* You use ARP to discover the MAC address of R

* Exchange between you and R

Ethernet ARP

You

dst router

MAC?

* Protocol count = 5




Step 3: Send a DNS request

« Exchange between you and yourDNS
* Now ready to send that packet

yourDNS
-

UDP DNS

You
UcCB

MAC source: u.u.u..u
dst: u.dns.ip.addr —

* Protocol count = 6



Step 4: yourDNS does its thing

* yourDNS resolves www.google.com

@’ root
I’ name server
You 0=
yourDNS
\ @
Q; g top-level
_— - _f_ name server
www.google.com’s @' google’s
IP address is g.g.g.8 N name server

* Protocol count = 6


http://www.google.com/

Step 5: Getting the content (at last)

|CB %\

Google’s
datacenter

t% P | TCP HTTP

MAC
source: u.u.u..u

dst: g.g.g.g

 Protocol count =8



Recap: Name discovery/resolution

« MAC addresses?

* my own: hardcoded
 others: ARP (given IP address)

* |P addresses?
* my own: DHCP

 others: DNS (given domain name)
* how do | bootstrap DNS communication? (DHCP)

* Domain names?
* search engines



Outline

e Review:

» Material covered by the midterm

* Will go as far as time permits; entire slide deck will be
available



Material covered by the midterm

e tl;dr: pre-midterm material will be more lightly tested than post
midterm

* You should definitely know concepts that are necessary building
blocks for the material we've covered since the midterm

* Following slides just elaborate on this ...



Lectures 1-4: Overview and Architecture

* Packet delay and link characteristics

 Sharing network bandwidth: best-effort vs.
reservations

* Notion of layering and layers in the Internet
architecture (L1-L7)

* What layers are implemented where & the end-
to-end argument

* Protocols, packet headers, header encap/decap,
life of a packet



Lectures 5-8: Intra-domain Routing

*General concepts in routing
* Control vs. data plane
* Routing vs. forwarding

* Neighbors, route advertisements, forwarding
tables, next-hop

* Link weights and least-cost paths
* Deadends, loops, convergence



Lectures 5-8: Intra-domain Routing

Remember the general idea behind different routing
approaches:

* DV: | tells my neighbors about my lowest-cost distance to
every destination

* LS: | tell everyone about my immediate links/neighbors
* Know that DV/LS typically operate at L3



Lectures 5-8: IP Routers and IP Addressing

* IP addresses (CIDR): hierarchical allocation, prefixes, masks

* IP routers: overall architecture: control proc. vs. linecards,
fast path vs. slow path

* IP Forwarding: based on longest-prefix match (LPM)

* IP header: you should be familiar with key concepts
relevant to the IP header

* Why we have checksums, fragmentation, protocol field



Lectures 9-10: Inter-domain Routing

* Concepts you should know
* Autonomous systems (domains)

T
T

* Providers and their biz. relationships (customer-provider vs.
neering)

lerarchical addressing
nat inter-domain routing operates on address prefixes

nat hierarchical addressing enables scalability in inter-

domain routing
* That inter-domain route selection is driven by policy



Lectures 11-12: Reliability

* Know the building blocks of reliable protocols
* Checksums
« Cumulative ACKs, duplicate ACKs
* Timeouts
« Retransmissions
« Sequence numbers
» Sliding windows



Lectures 11-12: TCP, UDP

« Know the TCP abstraction

* Reliable, in-order bytestream

« Concepts: connection, connection state, 3-way handshake connection
setup/teardown

* Understand TCP’s role in the overall arch (L4, implemented at end hosts)
« TCP functionality: mux/demux, reliability, flow control, congestion control

* Also, UDP abstraction (best-effort packet delivery) and how it
differs from TCP



Lectures 13-14: Congestion Control

* CC used to allocate network BW
 Goals: low packet loss/delay, high like utilization, fair sharing

* Design space ideas that you should recall at a high level
« Dynamic adjustment vs. reservations
* Host-based vs. router-assisted

» Know the general approach TCP follows:
* host-based, with dynamic adjustment based on AIMD, loss as signal, etc.
* Pros/cons of the above approach

* Trends and implications revealed by the TCP throughput
equation



Thanks & Good luck!



